Rules for the Classification of Inland Navigation Vessels

PART B – Hull Design and Construction

Chapters 1 – 2 – 3 – 4 – 5 – 6 – 7 – 8
2.1 **Incorporation** The Client shall always: (i) maintain the Unit in good condition after surveys, (ii) present the Unit for surveys; and (iii) perform all the necessary work in due time of any circumstances that may affect the given appurtenant of the Unit or cause to modify the scope of the Services.

2.2.1 The Client shall: (i) promptly notify the Society of any relevant safety issue and take all necessary safety-related measures to ensure a safe work environment; (ii) cooperate with the Society and its officers, employees, agents, or subcontractors and shall comply with all applicable safety regulations.

6.2 Without prejudice to any other rights hereunder; in case of Client’s payment default, the Society shall be entitled to charge, in addition to the amount not properly paid, interests equal to twelve (12) months LIBOR plus two (2) per cent as of due date calculated on the number of days such payment is delinquent. The Society shall also have the right to withhold Certificates and other documents and/or to suspend or revoke the validity of Certificates.

6.3 In case of dispute on the invoice amount, the undisputed portion of the invoice shall be paid and an explanation on the dispute shall accompany payment so that action can be taken to solve the dispute.

7. LIABILITY The Society bears no liability for consequential loss. For the purpose of this clause consequential loss shall include, without limitation:

- Indirect or consequential loss;
- Loss and/or deferral of production, loss of product, loss of use, loss of bargain, loss of revenue, loss of profit or anticipated profit, loss of business and business interruption, in each case whether direct or indirect.

9.1 The Client shall have the right to terminate the Services (and the relevant contract) for convenience after giving the other Party thirty (30) days’ written notice, and without prejudice to clause 6 above.

14.1 **INDEMNITY CLAUSE** The Client shall: (i) defend, release, save, indemnify and hold harmless the Society from and against any and all claims, demands, lawsuits or actions for damages, including legal fees, for harm or loss to persons or property tangible, intangible or otherwise, which may be brought against the Society, incidental to, arising out of or in connection with: (a) the classification of the Services; (b) the classification of the Units; and (c) the classification of the Units in the course of or in connection with opinions delivered according to clause 4.4 above; (ii) for those claims caused solely and completely by the gross negligence of the Society, its employees, agents, or subcontractors.

15.1 **Governing Law and Dispute Resolution** The Parties shall use the confidential information exclusively within the framework of their activity underlying their business relationship.

16. **Severability** In case of double jeopardy of the interpretation of the conditions, the English text prevails.
Rules for Inland Navigation Vessels

Part B

Hull Design and Construction

<table>
<thead>
<tr>
<th>Chapters</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>General</td>
</tr>
<tr>
<td>2</td>
<td>Hull and Stability Principles</td>
</tr>
<tr>
<td>3</td>
<td>Design Loads</td>
</tr>
<tr>
<td>4</td>
<td>Hull Girder Strength</td>
</tr>
<tr>
<td>5</td>
<td>Hull Scantlings</td>
</tr>
<tr>
<td>6</td>
<td>Other Structures</td>
</tr>
<tr>
<td>7</td>
<td>Hull Outfitting</td>
</tr>
<tr>
<td>8</td>
<td>Construction and Testing</td>
</tr>
</tbody>
</table>

February 2019
These Rules apply to inland navigation vessels for which contracts for construction are signed on or after February 1st, 2019.

The English version of these Rules takes precedence over editions in other languages.
CHAPTER 1
GENERAL

Section 1 Application

1 General 31
 1.1 Structural requirements
 1.2 Limits of application to lifting appliances

2 Rule application 31
 2.1 Vessel parts
 2.2 Rules applicable to various vessel parts
 2.3 Rules applicable to other vessel items

3 Rounding off of scantlings 32
 3.1 General

Section 2 Symbols and Definitions

1 Units 33
 1.1

2 Definitions 33
 2.1 Rule length
 2.2 Breadth
 2.3 Depth
 2.4 Draught
 2.5 Length overall
 2.6 Length of waterline
 2.7 Ends of rule length and midship
 2.8 Superstructure
 2.9 Deckhouse
 2.10 Strength deck
 2.11 Weather deck
 2.12 Bulkhead deck
 2.13 Cofferdam
 2.14 Inner side
 2.15 Watertight
 2.16 Watertight

3 Reference co-ordinate system 34
 3.1 General

Section 3 Documentation to be Submitted

1 Documentation to be submitted for all vessels 35
 1.1 Vessels surveyed by the Society during the construction
Further documentation to be submitted for vessels with specific notations

2.1 General
2.2 Type and service notations
2.3 Additional class notations
CHAPTER 2
HULL AND STABILITY PRINCIPLES

Section 1 General Arrangement Design

<table>
<thead>
<tr>
<th></th>
<th>Subdivision arrangement</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Number of watertight bulkheads</td>
</tr>
<tr>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>1.2</td>
<td>Collision bulkhead</td>
</tr>
<tr>
<td>1.3</td>
<td>After peak and machinery space bulkheads</td>
</tr>
<tr>
<td>1.4</td>
<td>Tank bulkheads</td>
</tr>
<tr>
<td>1.5</td>
<td>Height of transverse watertight bulkheads</td>
</tr>
<tr>
<td>1.6</td>
<td>Openings in watertight bulkheads</td>
</tr>
<tr>
<td>1.7</td>
<td>Watertight doors</td>
</tr>
</tbody>
</table>

Section 2 Stability

<table>
<thead>
<tr>
<th></th>
<th>General</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Application</td>
</tr>
<tr>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>1.2</td>
<td>Definitions</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Examination procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Documents to be submitted</td>
</tr>
<tr>
<td>2.1</td>
<td></td>
</tr>
<tr>
<td>2.2</td>
<td>Displacement and centre of gravity</td>
</tr>
<tr>
<td>2.3</td>
<td>Effects of free surfaces of liquids in tanks</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Inclining test and lightweight check</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>General</td>
</tr>
<tr>
<td>3.1</td>
<td></td>
</tr>
<tr>
<td>3.2</td>
<td>Detailed procedure</td>
</tr>
</tbody>
</table>

Section 3 Materials

<table>
<thead>
<tr>
<th></th>
<th>General</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Characteristics of materials</td>
</tr>
<tr>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>1.2</td>
<td>Testing of materials</td>
</tr>
<tr>
<td>1.3</td>
<td>Manufacturing processes</td>
</tr>
</tbody>
</table>
Steels for hull structure

2.1 Application
2.2 Information to be kept on board
2.3 Dimensional tolerances
2.4 Material factor k
2.5 Grades of steel
2.6 Grades of steel for structures exposed to low air temperatures

Aluminium alloy structures

3.1 General
3.2 Extruded plating
3.3 Mechanical properties of weld joints
3.4 Material factor
3.5 Transition joints

Other materials

4.1 General

Section 4 Strength Principles

1. General strength principles
 1.1 Structural continuity
 1.2 Connections with higher strength steel
 1.3 Connections between steel and aluminium

2. Plating
 2.1 Insert plates and doublers

3. Ordinary stiffeners
 3.1 General
 3.2 Span of ordinary stiffeners
 3.3 Width of attached plating
 3.4 Sections
 3.5 Geometric properties
 3.6 End connections

4. Primary supporting members
 4.1 General
 4.2 Span of primary supporting members
 4.3 Width of attached plating
 4.4 Geometric properties
 4.5 Bracketed end connections
 4.6 Bracketless end connections
 4.7 Cut-outs and holes
 4.8 Stiffening arrangement

5. Hull scantling principle
 5.1 Calculation point
 5.2 Span correction coefficients
 5.3 Coefficients for pressure distribution correction
Section 5 Net Scantling Approach

1. **Application criteria** 60
 - 1.1 General

2. **Net strength characteristic calculation** 60
 - 2.1 Designer’s proposal based on gross scantlings
 - 2.2 Designer’s proposal based on net scantlings

3. **Corrosion additions** 61
 - 3.1 Values of corrosion additions

Section 6 Buckling and Ultimate Strength of Ordinary Stiffeners and Stiffened Panels

1. **General** 62
 - 1.1 Application

2. **Proof of single plate fields** 62
 - 2.1 Load cases
 - 2.2 Plating
 - 2.3 Effective width of plating
 - 2.4 Webs and flanges

3. **Proof of partial and total fields** 64
 - 3.1 Longitudinal and transverse stiffeners
 - 3.2 Lateral buckling
 - 3.3 Stiffeners not subjected to lateral load

Appendix 1 Geometric Properties of Standard Sections

1. **Angles, flats and bulb flats** 67
 - 1.1 Notice

2. **Channels** 67
 - 2.1 Notice
CHAPTER 3
DESIGN LOADS

Section 1 General

1 Definitions 75
1.1 Still water loads 1.2 Wave loads 1.3 Dynamic loads 1.4 Local loads 1.5 Hull girder loads 1.6 Loading condition 1.7 Load case 1.8 Service conditions

2 Application criteria 75
2.1 Application 2.2 Hull girder loads 2.3 Local loads 2.4 Load definition criteria to be adopted in structural analyses based on plate or isolated beam structural models 2.5 Load definition criteria to be adopted in structural analyses based on three dimensional structural models

3 Standard loading conditions 77
3.1 Cargo vessels and tank vessels 3.2 Passenger vessels 3.3 Vessels for dredging activities 3.4 Tugs and pushers

4 Load cases 78
4.1 General 4.2 Upright vessel condition during loading/ unloading in harbour (load case “a”) 4.3 Upright vessel condition during navigation (load case “b”) 4.4 Upright vessel condition during working (load case “b”)
4.5 Inclined vessel condition during navigation (load cases “c” and “d”) 4.6 Inclined vessel condition during working (load cases “c” and “d”) 4.7 Summary of load cases

5 Range of navigation 79
5.1 Wave height H 5.2 Navigation coefficient n 5.3 Length-to-depth ratio

Section 2 Hull Girder Loads

1 General 81
1.1 Application

2 Design still water bending moments 81
2.1 General
Section 3 Vessel Motions and Accelerations

1. **General**
 - 1.1 General considerations
 - 1.2 Application

2. **Vessel motions and accelerations**
 - 2.1 Vessel absolute motions and accelerations
 - 2.2 Vessel relative motions
 - 2.3 Vessel relative accelerations

Section 4 Local Loads

1. **General**
 - 1.1 Application
 - 1.2 Inertial loads

2. **External pressure**
 - 2.1 Pressure on sides and bottom
 - 2.2 Pressure on exposed decks

3. **Internal loads**
 - 3.1 Liquids
 - 3.2 Dry bulk cargoes
 - 3.3 Dry uniform cargoes
 - 3.4 Dry unit cargoes
 - 3.5 Wheeled cargoes
 - 3.6 Accommodation

4. **Flooding pressure**
 - 4.1 Still water pressure

5. **Testing pressures**
 - 5.1 Still water pressures
CHAPTER 4
HULL GIRDER STRENGTH

Section 1 Strength Characteristics of the Hull Girder Transverse Sections

1 General 99
 1.1 Application
2 Characteristics of the hull girder transverse sections 99
 2.1 Hull girder transverse sections
 2.2 Hull girder section modulus
3 Contribution to longitudinal strength 100
 3.1 Strength deck
 3.2 Estimation of contribution of deck erections

Section 2 Yielding Check

1 Hull girder normal stresses 101
 1.1 Stress calculation
 1.2 Checking criterion
Chapter 5
Hull Scantlings

Section 1 General

<table>
<thead>
<tr>
<th>Section</th>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>General</td>
<td>105</td>
</tr>
<tr>
<td></td>
<td>1.1 Application</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.2 Net scantlings</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.3 Partial safety factors</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.4 Summary table</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Hull arrangements</td>
<td>107</td>
</tr>
<tr>
<td></td>
<td>2.1 Arrangements for hull openings</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.2 River chests</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.3 Pipe connections at the shell plating</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Strength check in testing conditions</td>
<td>107</td>
</tr>
<tr>
<td></td>
<td>3.1 General</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.2 Lateral pressure in testing conditions</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.3 Plating</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.4 Structural members</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Parameters for calculation of thickness t_3</td>
<td>108</td>
</tr>
<tr>
<td></td>
<td>4.1 Ratios</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.2 Correction factor for boundary conditions</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.3 Factor K_1</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Direct calculation</td>
<td>109</td>
</tr>
<tr>
<td></td>
<td>5.1 Application</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.2 Analysis documentation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.3 Yielding check of structural members analysed through an isolated beam structural model</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.4 Yielding check of structural members analysed through a three dimensional structural model</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.5 Torsion of catamarans</td>
<td></td>
</tr>
</tbody>
</table>

Section 2 Bottom Scantlings

<table>
<thead>
<tr>
<th>Section</th>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>General</td>
<td>113</td>
</tr>
<tr>
<td></td>
<td>1.1 Application</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.2 General arrangement</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.3 Keel</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.4 Bilge</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.5 Drainage and openings for air passage</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Design lateral pressures</td>
<td>113</td>
</tr>
<tr>
<td></td>
<td>2.1 General</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.2 Plating design lateral pressures</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.3 Structural member design lateral pressures</td>
<td></td>
</tr>
</tbody>
</table>
3 Hull girder normal stresses 114

3.1 General
3.2 Plating subjected to lateral pressure
3.3 Structural members subjected to lateral pressure
3.4 Hull girder normal compression stresses

4 Plating scantling 114

4.1 Plating net thicknesses
4.2 Strength check in testing conditions
4.3 Buckling strength check
4.4 Bilge plating

5 Structural member scantlings 115

5.1 Minimum web net thicknesses
5.2 Net section modulus and net shear sectional area of structural members
5.3 Strength check in testing conditions
5.4 Buckling strength check

6 Transversely framed single bottom 116

6.1 Floors
6.2 Girders

7 Longitudinally framed single bottom 117

7.1 Bottom longitudinals
7.2 Bottom transverses
7.3 Girders

8 Transversely framed double bottom 117

8.1 Double bottom arrangement
8.2 Floors
8.3 Bilge wells
8.4 Girders

9 Longitudinally framed double bottom 118

9.1 General
9.2 Transverses
9.3 Bottom and inner bottom longitudinal ordinary stiffeners
9.4 Brackets to centreline girder

Section 3 Side Scantlings

1 General 119

1.1 Application
1.2 General arrangement

2 Design lateral pressures 120

2.1 General
2.2 Plating and structural member design lateral pressures

3 Hull girder normal stresses 120

3.1 General
3.2 Plating subjected to lateral pressure
3.3 Structural members subjected to lateral pressure
3.4 Hull girder normal compression stresses
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Plating scantling</td>
<td>120</td>
</tr>
<tr>
<td>4.1</td>
<td>Plating net thicknesses</td>
<td></td>
</tr>
<tr>
<td>4.2</td>
<td>Strength check in testing conditions</td>
<td></td>
</tr>
<tr>
<td>4.3</td>
<td>Buckling strength check</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Structural member scantlings</td>
<td>121</td>
</tr>
<tr>
<td>5.1</td>
<td>Minimum web net thicknesses</td>
<td></td>
</tr>
<tr>
<td>5.2</td>
<td>Net section modulus and net shear sectional area of structural members</td>
<td></td>
</tr>
<tr>
<td>5.3</td>
<td>Strength check in testing conditions</td>
<td></td>
</tr>
<tr>
<td>5.4</td>
<td>Buckling strength check</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Transversely framed single side</td>
<td>121</td>
</tr>
<tr>
<td>6.1</td>
<td>Side frames</td>
<td></td>
</tr>
<tr>
<td>6.2</td>
<td>Side stringers</td>
<td></td>
</tr>
<tr>
<td>6.3</td>
<td>Web frames</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Longitudinally framed single side</td>
<td>124</td>
</tr>
<tr>
<td>7.1</td>
<td>Side transverses</td>
<td></td>
</tr>
<tr>
<td>7.2</td>
<td>Side longitudinals</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Transversely framed double side</td>
<td>124</td>
</tr>
<tr>
<td>8.1</td>
<td>General</td>
<td></td>
</tr>
<tr>
<td>8.2</td>
<td>Side and inner side frames</td>
<td></td>
</tr>
<tr>
<td>8.3</td>
<td>Side and inner side web frames</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Longitudinally framed double side</td>
<td>124</td>
</tr>
<tr>
<td>9.1</td>
<td>General</td>
<td></td>
</tr>
<tr>
<td>9.2</td>
<td>Side and inner side longitudinals</td>
<td></td>
</tr>
<tr>
<td>9.3</td>
<td>Side transverses</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Frame connections</td>
<td>125</td>
</tr>
<tr>
<td>10.1</td>
<td>General</td>
<td></td>
</tr>
<tr>
<td>10.2</td>
<td>Upper and lower brackets of frames</td>
<td></td>
</tr>
</tbody>
</table>

Section 4 Deck Scantlings

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>General</td>
<td>126</td>
</tr>
<tr>
<td>1.1</td>
<td>Application</td>
<td></td>
</tr>
<tr>
<td>1.2</td>
<td>General arrangement</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Design lateral pressures</td>
<td>127</td>
</tr>
<tr>
<td>2.1</td>
<td>General</td>
<td></td>
</tr>
<tr>
<td>2.2</td>
<td>Plating and structural member design lateral pressures</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Hull girder normal stresses</td>
<td>128</td>
</tr>
<tr>
<td>3.1</td>
<td>General</td>
<td></td>
</tr>
<tr>
<td>3.2</td>
<td>Plating subjected to lateral pressure</td>
<td></td>
</tr>
<tr>
<td>3.3</td>
<td>Structural members subjected to lateral pressure</td>
<td></td>
</tr>
<tr>
<td>3.4</td>
<td>Hull girder normal compression stresses</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Buckling strength check</td>
<td>128</td>
</tr>
<tr>
<td>4.1</td>
<td>Plating buckling strength check</td>
<td></td>
</tr>
<tr>
<td>4.2</td>
<td>Buckling strength check of structural members</td>
<td></td>
</tr>
</tbody>
</table>
Section 5 Bulkhead Scantlings

1 General 137

1.1 Application
1.2 General arrangement

2 Design lateral pressures 138

2.1 General
2.2 Plating and structural member design lateral pressures

3 Hull girder normal stresses 138

3.1 General
3.2 Plating subjected to lateral pressure
3.3 Structural members subjected to lateral pressure
3.4 Hull girder normal compression stresses
<table>
<thead>
<tr>
<th>Section</th>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Plating scantling</td>
<td>138</td>
</tr>
<tr>
<td>4.1</td>
<td>Plating net thicknesses</td>
<td>138</td>
</tr>
<tr>
<td>4.2</td>
<td>Strength check in testing conditions</td>
<td>138</td>
</tr>
<tr>
<td>4.3</td>
<td>Buckling strength check</td>
<td>138</td>
</tr>
<tr>
<td>5</td>
<td>Structural member scantlings</td>
<td>139</td>
</tr>
<tr>
<td>5.1</td>
<td>Minimum web net thicknesses</td>
<td>139</td>
</tr>
<tr>
<td>5.2</td>
<td>Net section modulus and net sectional area of structural members</td>
<td>139</td>
</tr>
<tr>
<td>5.3</td>
<td>Strength check in testing conditions</td>
<td>139</td>
</tr>
<tr>
<td>6</td>
<td>Bulkhead arrangements</td>
<td>140</td>
</tr>
<tr>
<td>6.1</td>
<td>General arrangement</td>
<td>140</td>
</tr>
<tr>
<td>7</td>
<td>Plane bulkheads</td>
<td>140</td>
</tr>
<tr>
<td>7.1</td>
<td>General</td>
<td>140</td>
</tr>
<tr>
<td>7.2</td>
<td>Bulkhead stiffeners</td>
<td>140</td>
</tr>
<tr>
<td>7.3</td>
<td>End connections</td>
<td>140</td>
</tr>
<tr>
<td>7.4</td>
<td>Bracketed ordinary stiffeners</td>
<td>140</td>
</tr>
<tr>
<td>8</td>
<td>Corrugated bulkheads</td>
<td>141</td>
</tr>
<tr>
<td>8.1</td>
<td>General</td>
<td>141</td>
</tr>
<tr>
<td>8.2</td>
<td>Bulkhead scantlings</td>
<td>141</td>
</tr>
<tr>
<td>8.3</td>
<td>Structural arrangement</td>
<td>141</td>
</tr>
<tr>
<td>8.4</td>
<td>Bulkhead stool</td>
<td>141</td>
</tr>
<tr>
<td>9</td>
<td>Hold bulkheads of open deck vessels</td>
<td>143</td>
</tr>
<tr>
<td>9.1</td>
<td>Special arrangements</td>
<td>143</td>
</tr>
<tr>
<td>10</td>
<td>Non-tight bulkheads</td>
<td>143</td>
</tr>
<tr>
<td>10.1</td>
<td>General</td>
<td>143</td>
</tr>
<tr>
<td>10.2</td>
<td>Non-tight bulkheads not acting as pillars</td>
<td>143</td>
</tr>
<tr>
<td>10.3</td>
<td>Non-tight bulkheads acting as pillars</td>
<td>143</td>
</tr>
<tr>
<td>11</td>
<td>Wash bulkheads</td>
<td>143</td>
</tr>
<tr>
<td>11.1</td>
<td>General</td>
<td>143</td>
</tr>
<tr>
<td>11.2</td>
<td>Openings</td>
<td>143</td>
</tr>
</tbody>
</table>

Section 6 Vessels with Length L < 40 m

<table>
<thead>
<tr>
<th>Section</th>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>General</td>
<td>144</td>
</tr>
<tr>
<td>1.1</td>
<td>Application</td>
<td>144</td>
</tr>
<tr>
<td>2</td>
<td>Design lateral pressures</td>
<td>144</td>
</tr>
<tr>
<td>2.1</td>
<td>General</td>
<td>144</td>
</tr>
<tr>
<td>2.2</td>
<td>Design lateral pressures</td>
<td>144</td>
</tr>
<tr>
<td>3</td>
<td>Strength deck sectional area</td>
<td>144</td>
</tr>
<tr>
<td>3.1</td>
<td>Strength deck</td>
<td>144</td>
</tr>
<tr>
<td>3.2</td>
<td>Gross sectional area of flush deck and trunk deck</td>
<td>144</td>
</tr>
<tr>
<td>4</td>
<td>Plating scantling</td>
<td>145</td>
</tr>
<tr>
<td>4.1</td>
<td>Plating net thicknesses</td>
<td>145</td>
</tr>
<tr>
<td>4.2</td>
<td>Strength check in testing conditions</td>
<td>145</td>
</tr>
</tbody>
</table>
5 Structural member scantlings 145

5.1 Net section modulus and net sectional area of structural members
5.2 Strength check in testing conditions

Appendix 1 Analyses Based on Three Dimensional Models

1 General 148

1.1 Application

2 Analysis criteria 148

2.1 General
2.2 Finite element model analyses
2.3 Beam model analyses

3 Primary supporting members structural modelling 148

3.1 Model construction
3.2 Model extension
3.3 Finite element modelling criteria
3.4 Finite element models
3.5 Beam models
3.6 Boundary conditions of the whole three dimensional model

4 Primary supporting members load model 151

4.1 General
4.2 Local loads
4.3 Hull girder loads
4.4 Additional requirements for the load assignment to beam models

5 Stress calculation 152

5.1 Analyses based on finite element models
5.2 Analyses based on beam models

Appendix 2 Analyses of Primary Supporting Members Subjected to Wheeled Loads

1 General 154

1.1 Scope
1.2 Application
1.3 Information required
1.4 Lashing of vehicles

2 Analysis criteria 155

2.1 Finite element model analyses
2.2 Beam model analyses

3 Primary supporting members structural modelling 155

3.1 Model construction
3.2 Model extension
3.3 Boundary conditions of the three dimensional model

4 Load model 156

4.1 General
4.2 Local loads
4.3 Hull girder loads
Stress calculation

5.1 Stresses induced by local and hull girder loads
5.2 Analyses based on finite element models
5.3 Analyses based on beam models

Grillage analysis of primary supporting members of decks

6.1 Application
6.2 Analysis criteria
6.3 Boundary conditions
6.4 Load model
6.5 Stress calculation

Appendix 3 Torsion of Catamarans

1 General

1.1

2 Transverse strength in special case of catamaran

2.1 General
2.2 Transverse torsional connecting moment
2.3 Calculation of rotation angle
2.4 Determination of stresses in deck beams
2.5 Checking criteria
Chapter 6
Other Structures

Section 1 Fore Part

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>General</td>
<td>164</td>
</tr>
<tr>
<td>1.1</td>
<td>Application</td>
<td></td>
</tr>
<tr>
<td>1.2</td>
<td>Net scantlings</td>
<td></td>
</tr>
<tr>
<td>1.3</td>
<td>Resistance partial safety factor</td>
<td></td>
</tr>
<tr>
<td>1.4</td>
<td>Connections of the fore peak with structures located aft of the collision bulkhead</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Design loads</td>
<td>164</td>
</tr>
<tr>
<td>2.1</td>
<td>Local loads</td>
<td></td>
</tr>
<tr>
<td>2.2</td>
<td>Hull girder normal stresses</td>
<td></td>
</tr>
<tr>
<td>2.3</td>
<td>Plating subjected to lateral pressure</td>
<td></td>
</tr>
<tr>
<td>2.4</td>
<td>Structural members subjected to lateral pressure</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Strength check in testing conditions</td>
<td>165</td>
</tr>
<tr>
<td>3.1</td>
<td>General</td>
<td></td>
</tr>
<tr>
<td>3.2</td>
<td>Lateral pressure in testing conditions</td>
<td></td>
</tr>
<tr>
<td>3.3</td>
<td>Plating</td>
<td></td>
</tr>
<tr>
<td>3.4</td>
<td>Structural members</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Bottom scantlings and arrangements</td>
<td>166</td>
</tr>
<tr>
<td>4.1</td>
<td>Longitudinally framed bottom</td>
<td></td>
</tr>
<tr>
<td>4.2</td>
<td>Transversely framed bottom</td>
<td></td>
</tr>
<tr>
<td>4.3</td>
<td>Keel plate</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Side scantlings and arrangements</td>
<td>168</td>
</tr>
<tr>
<td>5.1</td>
<td>Arrangement</td>
<td></td>
</tr>
<tr>
<td>5.2</td>
<td>Longitudinally framed side</td>
<td></td>
</tr>
<tr>
<td>5.3</td>
<td>Transversely framed side</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Decks</td>
<td>169</td>
</tr>
<tr>
<td>6.1</td>
<td>Deck scantlings and arrangements</td>
<td></td>
</tr>
<tr>
<td>6.2</td>
<td>Stringer plate</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Non-tight bulkheads and platforms</td>
<td>170</td>
</tr>
<tr>
<td>7.1</td>
<td>Arrangements and scantlings</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Stems</td>
<td>170</td>
</tr>
<tr>
<td>8.1</td>
<td>General</td>
<td></td>
</tr>
<tr>
<td>8.2</td>
<td>Plate stems</td>
<td></td>
</tr>
<tr>
<td>8.3</td>
<td>Bar stems</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Thruster tunnel</td>
<td>171</td>
</tr>
<tr>
<td>9.1</td>
<td>Scantlings of the thruster tunnel and connection with the hull</td>
<td></td>
</tr>
</tbody>
</table>
Section 2 Aft Part

1 General 173
 1.1 Application
 1.2 Net scantlings
 1.3 Resistance partial safety factor
 1.4 Connections of the aft part with structures located fore of the after bulkhead

2 Design loads 173
 2.1 Local loads
 2.2 Hull girder normal stresses
 2.3 Plating subjected to lateral pressure
 2.4 Structural members subjected to lateral pressure

3 Strength check in testing conditions 174
 3.1 General
 3.2 Lateral pressure in testing conditions
 3.3 Plating
 3.4 Structural members

4 After peak 175
 4.1 Arrangement
 4.2 Bottom scantlings
 4.3 Side scantlings
 4.4 Deck scantlings and arrangements

5 Sternframes 179
 5.1 General
 5.2 Connections
 5.3 Propeller posts
 5.4 Propeller shaft bossing
 5.5 Stern tubes

Section 3 Machinery Space

1 General 181
 1.1 Application
 1.2 Net scantlings
 1.3 Resistance partial safety factor
 1.4 Connections of the machinery space with the structures located aft and forward
 1.5 Arrangements

2 Design loads 182
 2.1 Local loads
 2.2 Hull girder normal stresses
 2.3 Plating subjected to lateral pressure
 2.4 Structural members subjected to lateral pressure

3 Strength check in testing conditions 183
 3.1 General
 3.2 Lateral pressure in testing conditions
 3.3 Plating
 3.4 Structural members
<table>
<thead>
<tr>
<th>Section</th>
<th>Heading</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Hull scantlings</td>
<td>183</td>
</tr>
<tr>
<td>4.1</td>
<td>Shell plating</td>
<td></td>
</tr>
<tr>
<td>4.2</td>
<td>Shell structure</td>
<td></td>
</tr>
<tr>
<td>4.3</td>
<td>Topside structure</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Bottom structure</td>
<td>186</td>
</tr>
<tr>
<td>5.1</td>
<td>General</td>
<td></td>
</tr>
<tr>
<td>5.2</td>
<td>Transversely framed bottom</td>
<td></td>
</tr>
<tr>
<td>5.3</td>
<td>Longitudinally framed bottom</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Side structure</td>
<td>186</td>
</tr>
<tr>
<td>6.1</td>
<td>General</td>
<td></td>
</tr>
<tr>
<td>6.2</td>
<td>Transversely framed side</td>
<td></td>
</tr>
<tr>
<td>6.3</td>
<td>Longitudinally framed side</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Machinery casing</td>
<td>186</td>
</tr>
<tr>
<td>7.1</td>
<td>Arrangement</td>
<td></td>
</tr>
<tr>
<td>7.2</td>
<td>Openings</td>
<td></td>
</tr>
<tr>
<td>7.3</td>
<td>Scantlings</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Engine foundation</td>
<td>187</td>
</tr>
<tr>
<td>8.1</td>
<td>Arrangement</td>
<td></td>
</tr>
<tr>
<td>8.2</td>
<td>Scantlings</td>
<td></td>
</tr>
</tbody>
</table>

Section 4 Superstructures and Deckhouses

<table>
<thead>
<tr>
<th>1</th>
<th>General</th>
<th>190</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Application</td>
<td></td>
</tr>
<tr>
<td>1.2</td>
<td>Definitions</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Arrangements</td>
<td>190</td>
</tr>
<tr>
<td>2.1</td>
<td>Connections of superstructures and deckhouses with the hull structure</td>
<td></td>
</tr>
<tr>
<td>2.2</td>
<td>Gastight bulkheads</td>
<td></td>
</tr>
<tr>
<td>2.3</td>
<td>Local reinforcements</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Design loads</td>
<td>190</td>
</tr>
<tr>
<td>3.1</td>
<td>Sides and bulkheads</td>
<td></td>
</tr>
<tr>
<td>3.2</td>
<td>Pressure on decks</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Hull girder normal stresses</td>
<td>191</td>
</tr>
<tr>
<td>4.1</td>
<td>Plating subjected to lateral loads</td>
<td></td>
</tr>
<tr>
<td>4.2</td>
<td>Structural members subjected to lateral loads</td>
<td></td>
</tr>
<tr>
<td>4.3</td>
<td>Hull girder normal compression stresses</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Scantlings</td>
<td>191</td>
</tr>
<tr>
<td>5.1</td>
<td>Net scantlings</td>
<td></td>
</tr>
<tr>
<td>5.2</td>
<td>Partial safety factors</td>
<td></td>
</tr>
<tr>
<td>5.3</td>
<td>Scantling requirements</td>
<td></td>
</tr>
<tr>
<td>5.4</td>
<td>Buckling strength check</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Additional requirements applicable to movable wheelhouses</td>
<td>193</td>
</tr>
<tr>
<td>6.1</td>
<td>General</td>
<td></td>
</tr>
<tr>
<td>6.2</td>
<td>Arrangement</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Elastic bedding of deckhouses</td>
<td>194</td>
</tr>
<tr>
<td>7.1</td>
<td>General</td>
<td></td>
</tr>
</tbody>
</table>
Section 5 Hatch Covers

<table>
<thead>
<tr>
<th>1 General</th>
<th>195</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Application</td>
<td></td>
</tr>
<tr>
<td>1.2 Definitions</td>
<td></td>
</tr>
<tr>
<td>1.3 Materials</td>
<td></td>
</tr>
<tr>
<td>1.4 Net scantlings</td>
<td></td>
</tr>
<tr>
<td>1.5 Design loads</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2 Arrangements</th>
<th>196</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 General</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3 Scantlings</th>
<th>196</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 Application</td>
<td></td>
</tr>
<tr>
<td>3.2 Plating of hatch covers</td>
<td></td>
</tr>
<tr>
<td>3.3 Stiffening members of hatch covers</td>
<td></td>
</tr>
</tbody>
</table>

Section 6 Movable Decks and Ramps

<table>
<thead>
<tr>
<th>1 Movable decks and inner ramps</th>
<th>198</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Materials</td>
<td></td>
</tr>
<tr>
<td>1.2 Net scantlings</td>
<td></td>
</tr>
<tr>
<td>1.3 Plating</td>
<td></td>
</tr>
<tr>
<td>1.4 Ordinary stiffeners</td>
<td></td>
</tr>
<tr>
<td>1.5 Primary supporting members</td>
<td></td>
</tr>
<tr>
<td>1.6 Supports, suspensions and locking devices</td>
<td></td>
</tr>
<tr>
<td>1.7 Tests and trials</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2 External ramps</th>
<th>199</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 General</td>
<td></td>
</tr>
</tbody>
</table>

Section 7 Arrangements for Hull and Superstructure Openings

<table>
<thead>
<tr>
<th>1 Side shell openings</th>
<th>200</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 General</td>
<td></td>
</tr>
<tr>
<td>1.2 Local strengthening</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2 Cargo hatchways on open deck vessels</th>
<th>200</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Position of openings and local strengthening</td>
<td></td>
</tr>
<tr>
<td>2.2 Corners of hatchways</td>
<td></td>
</tr>
<tr>
<td>2.3 Deck strengthening</td>
<td></td>
</tr>
<tr>
<td>2.4 Hatch coamings</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3 Cargo hatchways on flush deck vessels</th>
<th>201</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 Position of openings local strengthening</td>
<td></td>
</tr>
<tr>
<td>3.2 Corners of hatchways</td>
<td></td>
</tr>
<tr>
<td>3.3 Deck strengthening</td>
<td></td>
</tr>
<tr>
<td>3.4 Hatch coamings</td>
<td></td>
</tr>
<tr>
<td>3.5 Very small hatches</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4 Sidescuttles, windows and skylights</th>
<th>202</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 General</td>
<td></td>
</tr>
<tr>
<td>4.2 Watertight sidescuttles and windows</td>
<td></td>
</tr>
<tr>
<td>4.3 Glasses</td>
<td></td>
</tr>
<tr>
<td>4.4 Skylights</td>
<td></td>
</tr>
</tbody>
</table>
Section 8 Helicopter Decks and Platforms

1 Application 205
 1.1 General

2 General arrangement 205
 2.1 Landing area and approach sector
 2.2 Sheathing of the landing area
 2.3 Safety net
 2.4 Drainage system

3 Design principle 205
 3.1 General
 3.2 Partial safety factors

4 Design loads 205
 4.1 Landing load
 4.2 Emergency landing load
 4.3 Garage load
 4.4 Specific loads for helicopter platforms

5 Scantlings 206
 5.1 General
 5.2 Plating
 5.3 Ordinary stiffeners
 5.4 Primary supporting members
CHAPTER 7
HULL OUTFITTING

Section 1 Rudders

1 General 211
 1.1 Application
 1.2 Gross scantlings
 1.3 Arrangements
 1.4 Materials

2 Force and torque acting on the rudder 212
 2.1 Rudder blade

3 Rudder stock scantlings 213
 3.1 Rudder stock diameter
 3.2 Deformation criterion

4 Rudder stock couplings 213
 4.1 Horizontal flange couplings
 4.2 Couplings between rudder stocks and tillers
 4.3 Cone couplings between rudder stocks and rudder blades
 4.4 Vertical flange couplings
 4.5 Couplings by continuous rudder stock welded to the rudder blade

5 Rudder stock and pintle bearings 217
 5.1 Forces on rudder stock and pintle bearings
 5.2 Rudder stock bearing
 5.3 Pintle bearings
 5.4 Pintles

6 Rudder blade scantlings 220
 6.1 General
 6.2 Rudder blade plating
 6.3 Connections of rudder blade structure with solid parts in forged or cast steel
 6.4 Connection of the rudder blade with the rudder stock by means of horizontal flanges
 6.5 Single plate rudders

7 Solepiece scantlings 223
 7.1 General
 7.2 Scantlings

8 Steering nozzles 224
 8.1 General
 8.2 Nozzle plating and internal diaphragms
 8.3 Nozzle stock
 8.4 Pintles
 8.5 Nozzle coupling

9 Azimuth propulsion system 226
 9.1 General
 9.2 Arrangement
 9.3 Design loads
Section 2 Bulwarks and Guard Rails

1 General 228

1.1 Introduction

2 Bulwarks 228

2.1 General
2.2 Scantlings

3 Guard rails 228

3.1 General
3.2 Scantlings

Section 3 Propeller Shaft Brackets

1 General 230

1.1
1.2 Strength check

2 Double arm propeller shaft brackets 230

2.1 General

3 Single arm propeller shaft brackets 231

3.1 Scantlings

4 Bossed propeller shaft brackets 231

4.1 General

Section 4 Equipment

1 General 232

1.1 General requirements

2 Anchors 232

2.1 General
2.2 Bow anchors
2.3 Stern anchors
2.4 Mass reduction
2.5 Number of anchors

3 Chain cables 233

3.1 General
3.2 Minimum breaking loads
3.3 Length of chain cables

4 Mooring and towing equipment 235

4.1 Ropes
4.2 Bollards
Section 5 Cranes and Bunker Masts

1 General 237
 1.1 Application
 1.2 Arrangement

2 Hull girder strength 237
 2.1 General

3 Hull scantlings 237
 3.1 Loads transmitted by the lifting appliances
 3.2 Vessel’s structures

Section 6 Vessel Coupling

1 General 238
 1.1 Application

2 Pushing arrangements 238
 2.1 Hull strengthening
 2.2 Pushing transoms
 2.3 Other structures
 2.4 Coupling devices

3 Towing arrangements 240
 3.1 General

4 Cables 240
 4.1 General
Chapter 8
Construction and Testing

Section 1 Welding and Weld Connections

1 General 243
 1.1 Application
 1.2 Base material
 1.3 Welding consumables and procedures
 1.4 Personnel and equipment
 1.5 Documentation to be submitted
 1.6 Design

2 Type of connections and preparation 245
 2.1 General
 2.2 Butt welding
 2.3 Fillet welding
 2.4 Partial and full T penetration welding
 2.5 Lap-joint welding
 2.6 Slot welding
 2.7 Plug welding

3 Specific weld connections 253
 3.1 Corner joint welding
 3.2 Bilge keel connection
 3.3 Struts connecting ordinary stiffeners
 3.4 Connection between propeller post and propeller shaft bossing
 3.5 Bar stem connections
 3.6 Deck subjected to wheeled loads
 3.7 Pillars connection
 3.8 Welds at the ends of structural members
 3.9 Joints between section ends and plates
 3.10 Welded shaft bracket joints
 3.11 Rudder coupling flanges
 3.12 Welded joints between rudder stock and rudder body
 3.13 Deck subjected to wheeled loads

4 Direct calculation of fillet welds 255
 4.1 General
 4.2 Fillet welds stressed by normal and shear forces
 4.3 Fillet welds stressed by bending moments and shear forces
 4.4 Fillet welds stressed by bending and torsional moments and shear forces
 4.5 Continuous fillet welded joints between web and flange of bending girders
 4.6 Intermittent fillet welded joints between web and flange of bending girders
 4.7 Fillet weld connections on overlapped profile joints
 4.8 Bracket joints
 4.9 Admissible stresses

5 Workmanship 259
 5.1 Welding procedures and consumables
 5.2 Welding operations
 5.3 Crossing of structural elements
6 Modifications and repairs during construction 261
 6.1 General
 6.2 Gap and weld deformations
 6.3 Defects
 6.4 Repairs on structures already welded

7 Inspections and checks 262
 7.1 General
 7.2 Visual and non-destructive examinations
 7.3 Radiographic inspection

Section 2 Protection of Hull Metallic Structures
1 Protection by coating 264
 1.1 General
 1.2 Structures to be protected

2 Protection against galvanic corrosion in tanks 264
 2.1 General

3 Cathodic protection of tanks 264
 3.1 General

4 Protection of bottom by ceiling 264
 4.1 General
 4.2 Arrangement
 4.3 Scantling

5 Protection of decks by wood sheathing 265
 5.1 Deck not entirely plated
 5.2 Wood sheathed plate deck

Section 3 Testing
1 Testing procedures of watertight compartments 266
 1.1 Application
 1.2 General
 1.3 Definitions
 1.4 Structural test procedures
 1.5 Leak test procedures
 1.6 Test methods
 1.7 Application of coating
 1.8 Safe access to joints
 1.9 Hydrostatic or hydropneumatic tightness test

2 Miscellaneous 270
 2.1 Watertight decks, trunks, etc.
 2.2 Steering nozzles
Chapter 1
GENERAL

SECTION 1 APPLICATION
SECTION 2 SYMBOLS AND DEFINITIONS
SECTION 3 DOCUMENTATION TO BE SUBMITTED
SECTION 1
APPLICATION

1 General

1.1 Structural requirements

1.1.1 Part B of the Rules contains the requirements for determination of the minimum hull scantlings, applicable to all types of inland navigation vessels as well as vessels operated in restricted maritime stretches of water, of displacement type, up to a rule length of 135 m, of normal form, speed and proportions, made in welded steel construction. These requirements are to be integrated with those specified in Part D, for any individual vessel type, depending on the class notations assigned to the vessels.

1.1.2 The requirements of Part B and Part D apply also to those steel vessels in which parts of the hull, e.g. superstructures or movable decks, are built in aluminium alloys.

1.1.3 Vessels with rule length exceeding 135 m, vessels whose hull materials are different than those mentioned in [1.1.1] and [1.1.2] vessels with novel features or unusual hull design are to be individually considered by the Society, on the basis of the principles and criteria adopted in the Rules.

1.1.4 The strength of vessels constructed and maintained according to the Rules is sufficient for the scantling draught considered when applying the Rules.

1.1.5 For vessels with high design speed and/or where high trim angles are expected or for dynamically supported vessels, other applicable Society’s Rules are to be complied with.

1.2 Limits of application to lifting appliances

1.2.1 The fixed parts of lifting appliances, considered as an integral part of the hull, are the structures permanently connected by welding to the vessel’s hull (for instance crane pedestals, masts, king posts, derrick heel seatings, etc., excluding cranes, derrick booms, ropes, rigging accessories, and, generally, any dismountable parts). The shrouds of masts embedded in the vessel’s structure are considered as fixed parts.

1.2.2 The fixed parts of lifting appliances and their connections to the vessel’s structure are covered by the Rules, even when the certification of lifting appliances is not required.

2 Rule application

2.1 Vessel parts

2.1.1 General

For the purpose of application of the Rules, the vessel is considered as divided into the following four parts:

- fore part
- central part
- machinery space, where applicable
- aft part.

2.1.2 Fore part

The fore part includes the structures of the stems and those:

- located in the part before the cargo zone in the case of vessels with a separated cargo zone (separated by bulkheads)
- located in the part extending over 0,1L behind the stem in all other cases unless otherwise mentioned.

2.1.3 Central part

The central part includes the structures within the greater of:

- the region extending over 0,5L through the midship section
- the region located between the fore part and:
 - the machinery space, if located aft
 - the aft part, otherwise.

2.1.4 Aft part

The aft part includes the structures located aft of the after peak bulkhead.

2.2 Rules applicable to various vessel parts

2.2.1 The various Chapters and Sections of Part B are to be applied for the scantling and arrangement of vessel parts according to Tab 1.

2.2.2 Ch 5, Sec 6 applies, as an alternative to the relevant requirements of Part B, Chapter 5, to vessels of rule length \(L < 40\) m.

Table 1: Rules applicable for the scantling and arrangement of vessel parts

<table>
<thead>
<tr>
<th>Part</th>
<th>Applicable Chapters and Sections</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>General</td>
</tr>
<tr>
<td>Fore part</td>
<td>Part B, Chapter 1</td>
</tr>
<tr>
<td></td>
<td>Part B, Chapter 2</td>
</tr>
<tr>
<td>Central part</td>
<td>Part B, Chapter 3</td>
</tr>
<tr>
<td>All vessels</td>
<td>Part B, Chapter 4</td>
</tr>
<tr>
<td>Central part L < 40 m</td>
<td>Part B, Chapter 6 (1), excluding:</td>
</tr>
<tr>
<td></td>
<td>• Ch 6, Sec 1</td>
</tr>
<tr>
<td></td>
<td>• Ch 6, Sec 2</td>
</tr>
<tr>
<td></td>
<td>Part B, Chapter 8</td>
</tr>
<tr>
<td>Aft part</td>
<td>Ch 6, Sec 2</td>
</tr>
</tbody>
</table>

(1) See also Tab 2.
(2) Ch 5, Sec 6 applies, as an alternative to the relevant requirements of Part B, Chapter 5, to vessels of rule length \(L < 40\) m.
2.3 Rules applicable to other vessel items

2.3.1 The various Chapters and Sections of the Rules are to be applied for the scantling of other vessel items according to Tab 2.

<table>
<thead>
<tr>
<th>Item</th>
<th>Applicable Chapters and Sections</th>
</tr>
</thead>
<tbody>
<tr>
<td>Machinery space</td>
<td>Ch 6, Sec 3</td>
</tr>
<tr>
<td>Superstructures and deckhouses</td>
<td>Ch 6, Sec 4</td>
</tr>
<tr>
<td>Hatch covers</td>
<td>Ch 6, Sec 5</td>
</tr>
<tr>
<td>Movable decks and ramps</td>
<td>Ch 6, Sec 6</td>
</tr>
<tr>
<td>Arrangement for hull and superstructure openings</td>
<td>Ch 6, Sec 7</td>
</tr>
<tr>
<td>Helicopter decks and platforms</td>
<td>Ch 6, Sec 8</td>
</tr>
<tr>
<td>Rudders</td>
<td>Ch 7, Sec 1</td>
</tr>
<tr>
<td>Other hull outfitting</td>
<td>Part B, Chapter 7</td>
</tr>
</tbody>
</table>

3 Rounding off of scantlings

3.1 General

3.1.1 Plate thicknesses

The rounding off of plate thicknesses is to be obtained from the following procedure:

a) the net thickness (see Ch 2, Sec 5, [2]) is calculated in accordance with the rule requirements

b) corrosion addition t_c (see Ch 2, Sec 5, [3]) is added to the calculated net thickness, and this gross thickness is rounded off to the nearest half-millimeter

c) the rounded net thickness is taken equal to the rounded gross thickness, obtained in b), minus the corrosion addition t_c.

3.1.2 Stiffener section moduli

Stiffener section moduli as calculated in accordance with the rule requirements are to be rounded off to the nearest standard value; however, no reduction may exceed 3%.
SECTION 2 SYMBOLS AND DEFINITIONS

Symbols

L : Rule length, in m, defined in [2.1]
B : Breadth, in m, defined in [2.2]
D : Depth, in m, defined in [2.3]
T : Draught, in m, defined in [2.4]
L_{\text{OA}} : Length overall, in m, defined in [2.5]
L_{\text{WL}} : Length of waterline, in m, defined in [2.6]
\Delta : Displacement, in tons, at draught T
\rho : River/sea water density, in t/m³
C_B : Block coefficient:

\[C_B = \frac{\Delta}{\rho L B T} \]

1 Units

1.1

1.1.1 Unless otherwise specified, the units used in the Rules are as indicated in Tab 1.

Table 1 : Units

<table>
<thead>
<tr>
<th>Designation</th>
<th>Usual symbol</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vessel’s dimensions</td>
<td>see [2.1]</td>
<td>m</td>
</tr>
<tr>
<td>Hull girder section modulus</td>
<td>Z</td>
<td>cm³</td>
</tr>
<tr>
<td>Density</td>
<td>\rho</td>
<td>t/m³</td>
</tr>
<tr>
<td>Concentrated loads</td>
<td>P</td>
<td>kN</td>
</tr>
<tr>
<td>Linearly distributed loads</td>
<td>q</td>
<td>kN/m</td>
</tr>
<tr>
<td>Surface distributed loads (pressure)</td>
<td>p</td>
<td>kN/m²</td>
</tr>
<tr>
<td>Thickness</td>
<td>t</td>
<td>mm</td>
</tr>
<tr>
<td>Span of ordinary stiffeners and primary supporting members</td>
<td>\ell</td>
<td>m</td>
</tr>
<tr>
<td>Spacing of ordinary stiffeners and primary supporting members</td>
<td>s, S</td>
<td>m</td>
</tr>
<tr>
<td>Bending moment</td>
<td>M</td>
<td>kN.m</td>
</tr>
<tr>
<td>Stresses</td>
<td>\sigma, \tau</td>
<td>N/mm²</td>
</tr>
<tr>
<td>Section modulus of ordinary stiffeners and primary supporting members</td>
<td>w</td>
<td>cm³</td>
</tr>
<tr>
<td>Sectional area of ordinary stiffeners and primary supporting members</td>
<td>A</td>
<td>cm²</td>
</tr>
<tr>
<td>Vessel speed</td>
<td>V</td>
<td>km/h</td>
</tr>
</tbody>
</table>

2 Definitions

2.1 Rule length

2.1.1 The rule length L is the distance, in m, measured on the load waterline from the fore side of the stem to the after side of the rudder post, or to the centre of the rudder stock where there is no rudder post. L is to be not less than 96% of the extreme length on the load waterline.

In the case of vessels having neither a rudder post (e.g. vessels fitted with azimuth thrusters) nor a rudder (e.g. pushed barges) the rule length L is to be taken equal to the length of the load waterline.

In vessels with unusual stem or stern arrangements, the rule length L is to be considered on a case by case basis.

2.2 Breadth

2.2.1 The breadth B is the greatest moulded breadth, measured amidships below the weather deck.

2.3 Depth

2.3.1 The depth D is the distance, in m, measured vertically on the midship transverse section, from the moulded base line to the top of the deck beam at side on the uppermost continuous deck.

In the case of a vessel with a solid bar keel, the moulded base line is to be taken at the intersection between the upper face of the bottom plating with the solid bar keel.

2.4 Draught

2.4.1 The draught T is the distance, in m, measured vertically on the midship transverse section, from the moulded base line to the load line.

In the case of vessels with a solid bar keel, the moulded base line is to be taken as defined in [2.3].

2.5 Length overall

2.5.1 The length overall is the extreme length of the vessel, in m, measured from the foremost point of the stem to the aftermost part of the stern.

2.6 Length of waterline

2.6.1 The length of waterline is the length of the hull, in m, measured at the maximum draught.
2.7 Ends of rule length and midship

2.7.1 The fore end (FE) of the rule length L, see Fig 1, is the perpendicular to the waterline at the forward side of the stem. The aft end (AE) of the rule length L, see Fig 1, is the perpendicular to the waterline at a distance L aft of the fore end. The midship is the perpendicular to the waterline at a distance 0.5L aft of the fore end.

Figure 1: Ends and midship

2.8 Superstructure

2.8.1 A superstructure is a decked structure connected to the strength deck defined in [2.10], extending from side to side of the vessel or with the side plating not being inboard of the shell plating more than 0.04B.

2.9 Deckhouse

2.9.1 A deckhouse is a decked structure other than a superstructure, located on the strength deck defined in [2.10] or above.

2.10 Strength deck

2.10.1 The strength deck (main deck) is the uppermost continuous deck contributing to the hull girder longitudinal strength.

2.11 Weather deck

2.11.1 The weather deck is the uppermost continuous exposed deck.

2.12 Bulkhead deck

2.12.1 The bulkhead deck is the uppermost deck up to which the transverse watertight bulkheads and the shell are carried.

2.13 Cofferdam

2.13.1 A cofferdam means an empty space arranged so that compartments on each side have no common boundary; a cofferdam may be located vertically or horizontally. As a rule, a cofferdam is to be properly ventilated and of sufficient size to allow for inspection.

2.14 Inner side

2.14.1 The inner side is the longitudinal bulkhead which limits the inner hull for vessels fitted with double hull.

2.15 Weathertight

2.15.1 “Weathertight” is the term used to a closure or structure which prevents water from penetrating into the vessel under any service conditions. Weathertight designates structural elements or devices which are so designed that the penetration of water into the inside of the vessel is prevented:
 - for one minute when they are subjected to a pressure corresponding to a 1 m head of water, or
 - for ten minutes when they are exposed to the action of a jet of water with a minimum pressure of 1 bar in all directions over their entire area.

Following constructions are regarded as weathertight:
 - weathertight doors complying with ISO 6042
 - ventilation flaps complying with ISO 5778
 - airpipe heads of automatic type and of approved design.

Weathertightness shall be proven by hose tests or equivalent tests accepted by the Society before installing.

2.16 Watertight

2.16.1 “Watertight” designates structural elements or devices which meet all the conditions stated for weathertightness and also remain tight at the anticipated internal and external pressure.

Watertightness should be proven by workshop testing and where applicable by type approvals in combination with construction drawings (e.g. watertight sliding doors, cable penetrations through watertight bulkheads).

3 Reference co-ordinate system

3.1 General

3.1.1 The vessel’s geometry, motions, accelerations and loads are defined with respect to the following right-hand co-ordinate system (see Fig 2):
 - Origin: at the intersection among the longitudinal plane of symmetry of vessel, the aft end of L and the baseline
 - X axis: longitudinal axis, positive forwards
 - Y axis: transverse axis, positive towards portside
 - Z axis: vertical axis, positive upwards.

3.1.2 Positive rotations are oriented in anti-clockwise direction about the X, Y and Z axes.

Figure 2: Reference co-ordinate system
1 Documentation to be submitted for all vessels

1.1 Vessels surveyed by the Society during the construction

1.1.1 The plans and documents to be submitted to the Society for review are listed in Tab 1.

Structural plans are to show details of connections of the various parts and, in general, are to specify the materials used, including their manufacturing processes, welding procedures and heat treatments.

Furthermore, considered values of corrosion margin are to be provided for structural design of increased corrosion addition with respect to minimum values stipulated under Ch 2, Sec 5, [3].

1.1.2 The Society reserves the right to ask for further documents and drawings considered necessary.

Irrespective of this, the Rules of construction also apply to components and details not shown in the submitted drawings.

1.1.3 Any deviation from reviewed drawings is subject to the Society’s approval before work is commenced.

1.1.4 The application of the Society’s construction Rules does not exclude any patent claims.

1.1.5 Plans and documents to be submitted for information

In addition to those in [1.1.1], the following plans and documents are to be submitted to the Society for information:

- general arrangement
- capacity plan, indicating the volume and position of the centre of gravity of all compartments and tanks
- lines plan
- hydrostatic curves
- lightweight distribution.

In addition, when direct calculation analyses are carried out by the Designer according to the Rules requirements, they are to be submitted to the Society.

Table 1: Plans and documents to be submitted for review for all vessels

<table>
<thead>
<tr>
<th>Plan or document</th>
<th>Containing also information on</th>
</tr>
</thead>
<tbody>
<tr>
<td>Midship section</td>
<td>Class characteristics[1] [2][3]</td>
</tr>
<tr>
<td>Transverse sections</td>
<td>Main dimensions[3]</td>
</tr>
<tr>
<td>Longitudinal sections</td>
<td>Maximum draught[3]</td>
</tr>
<tr>
<td>Shell expansion</td>
<td>Block coefficient for the length between perpendiculars at the maximum draught[3]</td>
</tr>
<tr>
<td>Decks and profiles</td>
<td>Frame spacing[3]</td>
</tr>
<tr>
<td>Double bottom</td>
<td>Contractual service speed[3]</td>
</tr>
<tr>
<td>Pillar arrangements</td>
<td>Density of cargoes[3]</td>
</tr>
<tr>
<td>Framing plan</td>
<td>Setting pressure of safety relief valves, if any[3]</td>
</tr>
<tr>
<td>Welding table</td>
<td>Assumed loading and unloading procedure[3]</td>
</tr>
<tr>
<td></td>
<td>Design loads on decks and double bottom[3]</td>
</tr>
<tr>
<td></td>
<td>Steel grades[3]</td>
</tr>
<tr>
<td></td>
<td>Location and height of air vents of various compartments[3]</td>
</tr>
<tr>
<td></td>
<td>Corrosion protection[3]</td>
</tr>
<tr>
<td></td>
<td>Openings in decks and shell and relevant compensations[3]</td>
</tr>
<tr>
<td></td>
<td>Boundaries of flat areas in bottom and sides[3]</td>
</tr>
<tr>
<td></td>
<td>Details of structural reinforcements and/or discontinuities[3]</td>
</tr>
<tr>
<td></td>
<td>Details related to welding[3]</td>
</tr>
<tr>
<td>Watertight subdivision bulkheads</td>
<td>Openings and their closing appliances, if any[3]</td>
</tr>
<tr>
<td>Watertight tunnels</td>
<td>Location and height of air vent outlets of various compartments[3]</td>
</tr>
<tr>
<td>Fore part structure</td>
<td>Location and height of air vent outlets of various compartments[3]</td>
</tr>
<tr>
<td>Transverse thruster, if any, general arrangement, tunnel structure, connections of thruster with tunnel and hull structures</td>
<td></td>
</tr>
<tr>
<td>Plan or document</td>
<td>Containing also information on</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Machinery space structures</td>
<td>Type, power and r.p.m. of propulsion machinery</td>
</tr>
<tr>
<td>Foundations of propulsion machinery</td>
<td>Mass and centre of gravity of machinery and boilers, if any</td>
</tr>
<tr>
<td></td>
<td>Mass of liquids contained in the engine room</td>
</tr>
<tr>
<td>Superstructures and deckhouses</td>
<td>Extension and mechanical properties of the aluminium alloy used (where applicable)</td>
</tr>
<tr>
<td>Machinery space casing</td>
<td></td>
</tr>
<tr>
<td>Hatch covers, if any</td>
<td>Design loads on hatch covers</td>
</tr>
<tr>
<td></td>
<td>Sealing and securing arrangements, type and position of locking bolts</td>
</tr>
<tr>
<td></td>
<td>Distance of hatch covers from the load waterline and from the fore end</td>
</tr>
<tr>
<td>Movable decks and ramps, if any</td>
<td></td>
</tr>
<tr>
<td>Windows and side scuttles, arrangements and details</td>
<td></td>
</tr>
<tr>
<td>Scuppers and sanitary discharges</td>
<td></td>
</tr>
<tr>
<td>Bulwarks and freeing ports</td>
<td>Arrangement and dimensions of bulwarks and freeing ports on the main deck and superstructure deck</td>
</tr>
<tr>
<td>Helicopter decks, if any</td>
<td>General arrangement</td>
</tr>
<tr>
<td></td>
<td>Main structure</td>
</tr>
<tr>
<td></td>
<td>Characteristics of helicopters: maximum mass, distance between landing gears or landing skids, print area of wheels or skids, distribution of landing gear loads</td>
</tr>
<tr>
<td>Rudder (1)</td>
<td>Maximum ahead service speed</td>
</tr>
<tr>
<td>Sternframe or sternpost, sterntube</td>
<td></td>
</tr>
<tr>
<td>Propeller shaft boss and brackets (1)</td>
<td></td>
</tr>
<tr>
<td>River/sea chests</td>
<td></td>
</tr>
<tr>
<td>Hawse pipes</td>
<td></td>
</tr>
<tr>
<td>Plan of outer doors and hatchways</td>
<td></td>
</tr>
<tr>
<td>Plan of manholes</td>
<td></td>
</tr>
<tr>
<td>Plan of access to and escape from spaces</td>
<td></td>
</tr>
<tr>
<td>Plan of ventilation</td>
<td>Use of spaces</td>
</tr>
<tr>
<td>Plan of watertight doors and scheme of relevant manoeuvring devices</td>
<td>Manoeuvring devices</td>
</tr>
<tr>
<td></td>
<td>Electrical diagrams of power control and position indication circuits</td>
</tr>
<tr>
<td>Stability documentation</td>
<td>See Ch 2, Sec 2, [2.1]</td>
</tr>
<tr>
<td>Equipment</td>
<td>List of equipment</td>
</tr>
<tr>
<td></td>
<td>Construction and breaking load of steel wires</td>
</tr>
<tr>
<td></td>
<td>Material, construction, breaking load and relevant elongation of synthetic ropes</td>
</tr>
</tbody>
</table>

(1) Where other steering or propulsion systems are adopted (e.g. steering nozzles or azimuth propulsion systems), the plans showing the relevant arrangement and structural scantlings are to be submitted.

2 Further documentation to be submitted for vessels with specific notations

2.1 General

2.1.1 Depending on the type and service notation and, possibly, the additional class notation assigned to the vessel, other plans or documents may be required to be submitted to the Society, in addition to those in 1.1.

2.2 Type and service notations

2.2.1 The additional plans or documents to be submitted to the Society for review or for information are specified in relevant sections of Part D, Chapter 1.

2.3 Additional class notations

2.3.1 The additional plans or documents to be submitted to the Society for review or for information are specified in relevant sections of Part D, Chapter 2 and Part D, Chapter 3.
Part B

Hull Design and Construction

Chapter 2

HULL AND STABILITY PRINCIPLES

<table>
<thead>
<tr>
<th>SECTION</th>
<th>TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GENERAL ARRANGEMENT DESIGN</td>
</tr>
<tr>
<td>2</td>
<td>STABILITY</td>
</tr>
<tr>
<td>3</td>
<td>MATERIALS</td>
</tr>
<tr>
<td>4</td>
<td>STRENGTH PRINCIPLES</td>
</tr>
<tr>
<td>5</td>
<td>NET SCANTLING APPROACH</td>
</tr>
<tr>
<td>6</td>
<td>BUCKLING AND ULTIMATE STRENGTH OF ORDINARY STIFFENERS AND STIFFENED PANELS</td>
</tr>
<tr>
<td>Appendix 1</td>
<td>GEOMETRIC PROPERTIES OF STANDARD SECTIONS</td>
</tr>
</tbody>
</table>
SECTION 1 GENERAL ARRANGEMENT DESIGN

1 Subdivision arrangement

1.1 Number of watertight bulkheads

1.1.1 All vessels are to have at least the following transverse watertight bulkheads:

- a collision bulkhead
- an after peak bulkhead
- two bulkheads forming the boundaries of the machinery space in vessels with machinery amidships, and one bulkhead forward of the machinery space in vessels with machinery aft. In the case of vessels with an electrical propulsion plant, both the generator room and the engine room are to be enclosed by watertight bulkheads.

1.1.2 Additional bulkheads
In the cargo space of single hull open deck vessels, additional transverse bulkheads may be recommended in order to ensure an efficient support to the topside structure.

Additional bulkheads may be required also for vessels having to comply with damage stability criteria.

In the cargo space of double hull vessels, transverse bulkheads are to be fitted in the side tanks in way of watertight floors.

1.2 Collision bulkhead

1.2.1 The collision bulkhead is to be positioned aft of the fore perpendicular at a distance \(d_C \), in m, such that:

\[
0.04 \, L_{WL} \leq d_C \leq 0.04 \, L_{WL} + 2
\]

1.2.2 The Society may, on a case by case basis, accept a distance from the collision bulkhead to the forward perpendicular different from that specified in [1.2.1], on the basis of stability calculations.

1.2.3 The collision bulkhead is to extend up to the bulkhead deck.

1.3 After peak and machinery space bulkheads

1.3.1 Extension
These bulkheads are to extend up to the bulkhead deck.

1.3.2 Stern tube
The after peak bulkhead is to enclose the sterntube and the rudder trunk in a watertight compartment. Other measures to minimize the danger of water penetrating into the vessel in the case of damage to stern tube arrangements may be taken at the discretion of the Society.

For vessels less than 40 m, where the after peak bulkhead is not provided in way of the sterntube stuffing box, the stern tubes are to be enclosed in watertight spaces of moderate volume.

1.4 Tank bulkheads

1.4.1 The number and location of transverse and longitudinal watertight bulkheads in vessels intended for the carriage of liquid cargoes (tankers and similar) are to comply with the stability requirements to which the vessel is subject.

1.4.2 In general, liquid compartments extending over the full breadth of the vessel are to be fitted with at least one longitudinal bulkhead, whether watertight or not, where the mean compartment breadth is at least equal to \(2B/3 \), where \(B \) is the vessel breadth defined in Ch 1, Sec 2, [2.2].

As a rule, where the bulkhead is perforated, the total area of the holes is generally to be about 5% of the total area of the bulkhead.

1.5 Height of transverse watertight bulkheads

1.5.1 Transverse watertight bulkheads are to extend up to the bulkhead deck.

1.5.2 Where it is not practicable to arrange a watertight bulkhead in one plane, a stepped bulkhead may be fitted. In this case, the part of the deck which forms the step is to be watertight and equivalent in strength to the bulkhead.

1.6 Openings in watertight bulkheads

1.6.1 Collision bulkheads
Openings may not be cut in the collision bulkhead below the bulkhead deck.

The number of openings in the collision bulkhead above the bulkhead deck is to be kept to the minimum compatible with the design and proper working of the vessel.

All such openings are to be fitted with means of closing to weathertight standards.

No doors or manholes are permitted in the collision bulkhead below the bulkhead deck.

No bilge cock or similar device is to be fitted on the collision bulkhead.

A maximum of two pipes may pass through the collision bulkhead below the bulkhead deck, unless otherwise justified. Such pipes are to be fitted with suitable valves operable from above the bulkhead deck. The valve chest is to be secured at the bulkhead inside the fore peak. Such valves may be fitted on the after side of the collision bulkhead provided that they are easily accessible and the space in which they are fitted is not a cargo space.
1.6.2 Bulkheads other than collision bulkheads

Certain openings below the bulkhead deck are permitted in bulkheads other than the collision bulkhead, but these are to be kept to a minimum compatible with the design and proper working of the vessel and to be provided with watertight doors having strength such as to withstand the head of water to which they may be subjected.

1.7 Watertight doors

1.7.1 Doors cut out in watertight bulkheads are to be fitted with watertight closing appliances. The arrangements to be made concerning these appliances are to be approved by the Society.

1.7.2 The thickness of watertight doors is to be not less than that of the adjacent bulkhead plating, taking account of their actual framing spacing.

1.7.3 Where vertical stiffeners are cut in way of watertight doors, reinforced stiffeners are to be fitted on each side of the door and suitably overlapped; cross-bars are to be provided to support the interrupted stiffeners.

1.7.4 Watertight doors required to be open during navigation are to be of the sliding type and capable of being operated both at the door itself, on both sides, and from an accessible position above the bulkhead deck.

Means are to be provided at the latter position to indicate whether the door is open or closed, as well as arrows indicating the direction in which the operating gear is to be operated.

1.7.5 Watertight doors may be of the hinged type if they are always intended to be closed during navigation.

Such doors are to be framed and capable of being secured watertight by handle-operated wedges which are suitably spaced and operable at both sides.

2 Compartment arrangement

2.1 Cofferdams

2.1.1 Cofferdams are to be provided between:

- fuel oil tanks and lubricating oil tanks
- compartments intended for liquid hydrocarbons (fuel oil, lubricating oil) and compartments intended for fresh water (drinking water, water for propelling machinery and boilers)
- compartments intended for liquid hydrocarbons (fuel oil, lubricating oil) and tanks intended for the carriage of liquid foam for fire extinguishing

2.1.2 Cofferdams separating:

- fuel oil tanks from lubricating oil tanks
- lubricating oil tanks from compartments intended for fresh water or boiler feed water
- lubricating oil tanks from those intended for the carriage of liquid foam for fire extinguishing

may not be required when deemed impracticable or unreasonable by the Society in relation to the characteristics and dimensions of the spaces containing such tanks, provided that:

- the thickness of common boundary plates of adjacent tanks is increased, with respect to the thickness obtained according to Ch 5, Sec 5, [4] by 2 mm in the case of tanks carrying fresh water or boiler feed water, and by 1 mm in all other cases
- the sum of the throats of the weld fillets at the edges of these plates is not less than the thickness of the plates themselves
- the structural test is carried out with a head increased by 1 m with respect to Ch 3, Sec 4, [5.1].

2.1.3 Spaces intended for the carriage of flammable liquids are to be separated from accommodation and service spaces by means of a cofferdam. Where accommodation and service spaces are arranged immediately above such spaces, the cofferdam may be omitted only where the deck is not provided with access openings and is coated with a layer of material recognized as suitable by the Society.

The cofferdam may also be omitted where such spaces are adjacent to a passageway, subject to the conditions stated in [2.1.2] for fuel oil or lubricating oil tanks.

2.1.4 Where a corner to corner situation occurs, tanks are not be considered to be adjacent.

Adjacent tanks not separated by cofferdams are to have adequate dimensions to ensure easy inspection.

2.2 Compartments forward of the collision bulkhead

2.2.1 The fore peak and other compartments located forward of the collision bulkhead cannot be used for the carriage of fuel oil or other flammable products.

3 Access arrangement

3.1 Double bottom

3.1.1 Inner bottom manholes

Inner bottom manholes are to be not less than 0.40 m x 0.40 m. Their number and location are to be so arranged as to provide convenient access to any part of the double bottom. Inner bottom manholes are to be closed by watertight plate covers.

Doubling plates are to be fitted on the covers, where secured by bolts.

Where no ceiling is fitted, covers are to be adequately protected from damage by the cargo.
3.1.2 Floor and girder manholes
Manholes are to be provided in floors and girders so as to provide convenient access to all parts of the double bottom. The size of manholes and lightening holes in floors and girders is, in general, to be less than 50 per cent of the local height of the double bottom. Where manholes of greater sizes are needed, edge reinforcement by means of flat bar rings or other suitable stiffeners may be required. Manholes may not be cut into the continuous centreline girder or floors and girders below pillars, except where allowed by the Society on a case by case basis.

3.2 Access to tanks
3.2.1 Tanks and subdivisions of tanks having lengths of 35 m and above are to be fitted with at least two access hatchways and ladders, as far apart as practicable longitudinally. Tanks less than 35 m in length are to be served by at least one access hatchway and ladder.

3.2.2 The dimensions of any access hatchway are to be sufficient to allow a person wearing a self-contained breathing apparatus to ascend or descend the ladder without obstruction and also to provide a clear opening to facilitate the hoisting of an injured person from the bottom of the tank. In no case is the clear opening to be less than 0.36 m² and its length 0.50 m.

3.3 Access within tanks
3.3.1 Wash bulkheads in tanks
Where one or more wash bulkheads are fitted in a tank, they are to be provided with openings so arranged as to facilitate the access of persons wearing breathing apparatus or carrying a stretcher with a patient.

3.3.2 Manholes
Where manholes are fitted, access is to be facilitated by means of steps and hand grips with platform landings on each side.

3.4 Access to side tanks
3.4.1 Where openings allowing access to side tanks are cut in the stringer plate, they are to be arranged clear of the hatch corners and shall be of even-deck design, without obstacles causing stumbling. In order to assure the continuity of the strength, they are to be cut smooth along a well rounded design and are to be strengthened by thick plates, by doubling plates or by other equivalent structure.

3.5 Access to cargo hold
3.5.1 As far as practicable, permanent or movable means of access stored on board are to be provided to ensure proper survey and maintenance of cargo holds.
SECTION 2 STABILITY

1 General

1.1 Application

1.1.1 For any vessel for which a stability investigation is required in order to comply with the class requirements, adequate stability shall be demonstrated. Adequate stability means compliance with the relevant Society’s rule requirements or with standards laid down by the relevant Administration, taking into account the type and service notation as well as the additional class notation of the vessel.

1.1.2 Approval of the Administration
Evidence of approval by the Administration concerned may be accepted for the purpose of classification.

1.2 Definitions

1.2.1 Plane of maximum draught
Plane of maximum draught is the water plane corresponding to the maximum draught at which the vessel is authorised to navigate.

1.2.2 Bulkhead deck
Bulkhead deck is defined in Ch 1, Sec 2, [2.12].

1.2.3 Freeboard
Freeboard is the distance between the plane of maximum draught and a parallel plane passing through the lowest point of the gunwale or, in the absence of a gunwale, the lowest point of the upper edge of the vessel’s side.

1.2.4 Residual freeboard
Residual freeboard is the vertical clearance available, in the event of the vessel heeling over, between the water level and the upper surface of the deck at the lowest point of the immersed side or, if there is no deck, the lowest point of the upper surface of the vessel’s side shell.

1.2.5 Safety clearance
Safety clearance is the distance between the plane of maximum draught and the parallel plane passing through the lowest point above which the vessel is no longer deemed to be watertight.

1.2.6 Residual safety clearance
Residual safety clearance is the vertical clearance available, in the event of the vessel heeling over, between the water level and the lowest point of the immersed side, beyond which the vessel is no longer regarded as watertight.

1.2.7 Weathertight
“Weathertight” is defined in Ch 1, Sec 2, [2.15].

1.2.8 Watertight
“Watertight” is defined in Ch 1, Sec 2, [2.16].

1.2.9 Lightship
The lightship is a vessel complete in all respects, but without consumables, stores, cargo, and crew and effects, owners supply and without liquids on board except for machinery and piping fluids, such as lubricants and hydraulics, which are at operating levels.

1.2.10 Inclining test
The inclining test is a procedure which involves moving a series of known weights, normally in the transverse direction, and then measuring the resulting change in the equilibrium heel angle of the vessel. By using this information and applying basic naval architecture principles, the vessel’s vertical centre of gravity (VCG or KG) is determined.

1.2.11 Lightweight check
The lightweight check is a procedure which involves auditing all items which are to be added, deducted or relocated on the vessel at the time of the inclining test so that the observed condition of the vessel can be adjusted to the lightship condition. The weight and longitudinal, transverse and vertical location of each item are to be accurately determined and recorded. The lightship displacement and longitudinal centre of gravity (LCG) can be obtained using this information, as well as the static waterline of the vessel at the time of the inclining test as determined by verifying draught marks of the vessel, the vessel’s hydrostatic data and the water density.

2 Examination procedure

2.1 Documents to be submitted

2.1.1 List of information
The following information is to be included in the documents to be submitted:

- general description of the vessel
- linesplan / hull definition such as offset table
- general arrangement and capacity plans indicating the assigned use of compartments and spaces (cargo, passenger, stores, accommodation, etc.)
- a sketch indicating the position of the draught marks referred to the vessel’s perpendiculars
- hydrostatic curves or tables corresponding to the design trim and, if significant trim angles are foreseen during the normal operation of the vessel, curves or tables corresponding to such a range of trim are to be introduced
• cross curves or tables of stability calculated on a free trimming basis, for the ranges of displacement and trim anticipated in normal operating conditions, with indication of the volumes which have been considered buoyant

• tank sounding tables or curves showing capacities, centres of gravity, and free surface data for each tank

• lightship data from the inclining test, including lightship displacement, centre of gravity co-ordinates, place and date of the inclining test, as well as the Society approval details specified in the inclining test report. It is suggested that a copy of the approved test report be included.

Where the above-mentioned information is derived from a sister ship, the reference to this sister ship is to be clearly indicated, and a copy of the approved inclining test report relevant to this sister ship is to be included

• standard loading conditions and examples for developing other acceptable loading conditions using the information contained in the trim and stability booklet

• intact stability results (total displacement and its centre of gravity co-ordinates, draughts at perpendiculars, GM, GM corrected for free surfaces effect, GZ values and curve, criteria reporting a comparison between the actual and the required values) are to be available for each of the above-mentioned operating conditions

• information on loading restrictions (maximum allowable load on double bottom, maximum specific gravity allowed in liquid cargo tanks, maximum filling level or percentage in liquid cargo tanks, maximum KG or minimum GM curve or table which can be used to determine compliance with the applicable intact and damage stability criteria) when applicable

• information about openings (location, tightness, means of closure), pipes or other progressive flooding sources

• information concerning the use of any special cross-flooding fittings with descriptions of damage conditions which may require cross-flooding, when applicable.

The Society may require any other necessary guidance for the safe operation of the vessel.

2.2 Displacement and centre of gravity

2.2.1 The lightship displacement and the location of the centre of gravity shall be determined either by means of an inclining experiment (see [3]) or by detailed mass and moment calculation.

In this latter case the lightweight of the vessel shall be checked by means of a lightweight test with a tolerance limit of about 5% between the mass determined by calculation and the displacement determined by the draught readings. A tolerance limit of 0,5% between the values of the longitudinal centre of gravity may not be exceeded.

The weight and centre of gravity calculation has to be submitted before the lightweight survey will be performed.

2.3 Effects of free surfaces of liquids in tanks

2.3.1 For all loading conditions, the initial metacentric height and the righting lever curve are to be corrected for the effect of free surfaces of liquids in tanks.

2.3.2 Free surface effects are to be considered for any filling level of the tank. Free surface effects need not be considered where a tank is nominally full.

3 Inclining test and lightweight check

3.1 General

3.1.1 Any vessel for which a stability investigation is requested in order to comply with class requirements is to be initially subjected to an inclining test permitting the evaluation of the position of the lightship centre of gravity, or a lightweight check of the lightship displacement, so that the stability data can be determined. Cases for which the inclining test is required and those for which the lightweight check is accepted in its place are listed in [3.1.3].

The inclining test or lightweight check is to be attended by a Surveyor of the Society. The Society may accept inclining tests or lightweight checks attended by a member of the flag Administration.

3.1.2 Inclining test

The inclining test is required in the following cases:

• Any new vessel, after its completion, except for the cases specified in [3.1.3]

• Any vessel, if deemed necessary by the Society, where any alterations are made so as to materially affect the stability.

3.1.3 Lightweight check

The Society may allow a lightweight check to be carried out in lieu of an inclining test in case of:

• an individual vessel, provided basic stability data are available from the inclining test of a sister ship and a lightweight check is performed in order to prove that the sister ship corresponds to the leader ship. In such a case the Society is satisfied when the result of the lightweight check shows a deviation from the displacement (Δ) and a deviation from the longitudinal centre of gravity (LCG) of the leader ship not greater than the values specified in Tab 1.

The final stability data to be considered for the sister ship in terms of displacement and position of the centre of gravity are those of the leader.

• special types of vessel, such as pontoons, provided that the vertical centre of gravity is considered at deck level.
• special types of vessel, such as catamarans, provided that:
 - a detailed list of weights and the positions of their centres of gravity is submitted
 - the lightweight check is showing accordance between the estimated values and those determined
 - adequate stability is demonstrated in all the loading conditions.

<table>
<thead>
<tr>
<th>Table 1 : Maximum deviations, in %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>L ≤ 50 m</td>
</tr>
<tr>
<td>Δ</td>
</tr>
<tr>
<td>LCG</td>
</tr>
</tbody>
</table>

(1) Greater values may be accepted by the Society on a case by case basis.

3.2 Detailed procedure

3.2.1 General conditions of the vessel

Prior to the test, the Society’s Surveyor is to be satisfied of the following:

• the weather conditions are to be favourable
• the vessel is to be moored in a quiet, sheltered area free from extraneous forces, such as to allow unrestricted heeling. The vessel is to be positioned in order to minimise the effects of possible wind and stream
• the vessel is to be transversely upright and hydrostatic data and sounding tables are to be available for the actual trim
• cranes, derrick, lifeboats and liferafts capable of inducing oscillations are to be secured
• main and auxiliary boilers, pipes and any other system containing liquids are to be filled
• the bilge and the decks are to be thoroughly dried
• preferably, all tanks are to be empty and clean, or completely full. The number of tanks containing liquids is to be reduced to a minimum taking into account the above-mentioned trim. The shape of the tank is to be such that the free surface effect can be accurately determined and remain almost constant during the test. All cross connections are to be closed
• the weights necessary for the inclination are to be already on board, located in the correct place
• all work on board is suspended and crew or personnel not directly involved in the inclining test shall not be on board
• the vessel is to be as complete as possible at the time of the test. The number of weights to be removed, added or shifted is to be limited to a minimum. Temporary material, tool boxes, staging, sand, debris, etc., on board is to be reduced to an absolute minimum
• Initial heeling angle shall not be greater than 0,5° prior to the start of the inclining test.

3.2.2 Inclining weights

The total weight used is preferably to be sufficient to provide a minimum inclination of one degree and a maximum of four degrees of heel to each side. The Society may, however, accept a smaller inclination angle for large vessels provided that the requirement on pendulum deflection or U-tube difference in height specified in [3.2.4] is complied with. Test weights are to be compact and of such a configuration that the VCG (vertical centre of gravity) of the weights can be accurately determined. Each weight is to be marked with an identification number and its weight. Re-certification of the test weights is to be carried out prior to the incline. A crane of sufficient capacity and reach, or some other means, shall be available during the inclining test to shift weights on the deck in an expeditious and safe manner. Water ballast is generally not acceptable as an inclining weight.

3.2.3 Water ballast as inclining weight

Where the use of solid weights to produce the inclining moment is demonstrated to be impracticable, the movement of ballast water may be permitted as an alternative method. This acceptance would be granted for a specific test only, and approval of the test procedure by the Society is required prior to the test. As a minimal prerequisite for acceptability, the following conditions are to be required:

• inclining tanks are to be wall-sided and free of large stringers or other internal structural members that create air pockets
• tanks are to be directly opposite to maintain vessel’s trim
• specific gravity of ballast water is to be measured and recorded
• pipelines to inclining tanks are to be full. If the vessel’s piping layout is unsuitable for internal transfer, portable pumps and pipes/hoses may be used
• blanks must be inserted in transverse manifolds to prevent the possibility of liquids leaking during transfer. Continuous valve control must be maintained during the test
• all inclining tanks must be manually sounded before and after each shift
• vertical, longitudinal and transverse centres are to be calculated for each movement
• accurate sounding/ullage tables are to be provided. The vessel’s initial heel angle is to be established prior to the incline in order to produce accurate values for volumes and transverse and vertical centres of gravity for the inclining tanks at every angle of heel. The draught marks amidships (port and starboard) are to be used when establishing the initial heel angle
• verification of the quantity shifted may be achieved by a flowmeter or similar device
• the time to conduct the inclining is to be evaluated. If time requirements for transfer of liquids are considered too long, water may be unacceptable because of the possibility of changing environmental conditions over long periods of time.
3.2.4 Pendulums

The use of three pendulums is recommended but a minimum of two are to be used to allow identification of bad readings at each pendulum station. However, for vessels of a length equal to or less than 30 m, only one pendulum can be accepted. Each is to be located in an area protected from the wind. The pendulums are to be long enough to give a measured deflection, to each side from upright, of at least 10 cm. To ensure recordings from individual instruments, it is suggested that the pendulums shall be physically located as far apart as practical.

The use of an inclinometer or U-tube is to be considered case by case. It is recommended that inclinometers or other measuring devices only be used in conjunction with at least one pendulum.

3.2.5 Means of communications

Efficient two-way communication are to be provided between central control and the weight handlers and between central control and each pendulum station. One person at a central control station shall have complete control over all personnel involved in the test.

3.2.6 Documentation

The person in charge of the inclining test shall have available a copy of the following plans at the time of the test:

- hydrostatic curves or hydrostatic data
- general arrangement plan of decks, holds, inner bottoms, etc.
- capacity plan showing capacities and vertical and longitudinal centres of gravity of cargo spaces, tanks, etc. When water ballast is used as inclining weights, the transverse and vertical centres of gravity for the applicable tanks, for each angle of inclination, must be available
- tank sounding tables
- draught mark locations, and
- docking drawing with keel thickness and draught mark corrections (if available).

3.2.7 Determination of the displacement

The Society’s Surveyor shall carry out all the operations necessary for the accurate evaluation of the displacement of the vessel at the time of the inclining test, as listed below:

- draught mark readings are to be taken at aft, midship and forward, at starboard and port sides
- the mean draught (average of port and starboard readings) is to be calculated for each of the locations where draught readings are taken and plotted on the vessel’s lines drawing or outboard profile to ensure that all readings are consistent and together define the correct waterline. The resulting plot is to yield either a straight line or a waterline which is either hogged or sagged. If inconsistent readings are obtained, the freeboards/draughts are to be retaken
- all double bottoms, as well as all tanks and compartments which can contain liquids, are to be checked, paying particular attention to air pockets which may accumulate due to the vessel’s trim and the position of air pipes, and also taking into account the provisions of [3.2.1]
- it is to be checked that the bilge is dry, and an evaluation of the liquids (not included in the lightship which cannot be pumped, remaining in the pipes, boilers, condenser, etc., is to be carried out
- the entire vessel is to be surveyed in order to identify all items which need to be added, removed or relocated to bring the vessel to the lightship condition. Each item is to be clearly identified by weight and location of the centre of gravity
- the possible solid permanent ballast is to be clearly identified and listed in the report.

3.2.8 The incline

The standard test generally employs eight distinct weight movements as shown in Fig 1.

The weights are to be transversely shifted, so as not to modify the vessel’s trim and vertical position of the centre of gravity.

After each weight shifting, the new position of the transverse centre of gravity of the weights is to be accurately determined.

Figure 1: Weight shift procedure

<table>
<thead>
<tr>
<th>Initial position</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1˚ shift</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2˚ shift</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3˚ shift</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4˚ shift</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

5˚ shift	1	1	1	1
6˚ shift	2	2	2	2
7˚ shift	3	3	3	3
8˚ shift	4	4	4	4
After each weight movement, the shifting distance (centre to centre) is to be measured and the heeling moment calculated by multiplying the distance by the amount of weight moved. The tangent is calculated for each pendulum by dividing the deflection by the length of the pendulum. The resultant tangents are plotted on the graph as shown in Fig 2. The pendulum deflection is to be read when the vessel has reached a final position after each weight shifting. During the reading, no movements of personnel are allowed.

For vessels with a length equal to or less than 30 m, six distinct weight movements may be accepted.

Figure 2 : Graph of resultant tangents

4 Intact stability design criteria

4.1 General intact stability criteria

4.1.1 The intact stability criteria specified in [4.1.2], [4.1.3] and [4.1.4] are to be complied with for all intended loading and unloading conditions, bearing in mind the influence of all free surfaces in tanks.

These criteria set minimum values, but no maximum values are recommended. It is advisable to avoid excessive values of metacentric height, since these might lead to acceleration forces which could be prejudicial to the vessel, its equipment and to safe carriage of the cargo.

4.1.2 GZ curve area

The surface of the positive area of the righting lever curve up to immersion of the first unprotected (non-weathertight) opening and in any event up to an angle of heel of 27°, shall not be less than 0,024 m.rad.

4.1.3 Minimum righting lever

In the positive area of the righting lever curve up to immersion of the first non-weathertight opening, there shall be a righting lever (GZ) of not less than 0,10 m.

4.1.4 Initial metacentric height

The initial metacentric height GM_0 shall not be less than 0,10 m.
1 General

1.1 Characteristics of materials

1.1.1 The characteristics of the materials to be used in the construction of vessels are to comply with the applicable requirements of NR216 Materials and Welding.

1.1.2 Materials with different characteristics may be accepted, provided their specification (manufacture, chemical composition, mechanical properties, welding, etc.) is submitted to the Society for approval.

1.2 Testing of materials

1.2.1 Materials are to be tested in compliance with the applicable requirements of NR216 Materials and Welding.

1.3 Manufacturing processes

1.3.1 The requirements of this Section presume that welding and other cold or hot manufacturing processes are carried out in compliance with current sound working practice and the applicable requirements of NR216 Materials and Welding. In particular:

- parent material and welding processes are to be within the limits stated for the specified type of material for which they are intended
- specific preheating may be required before welding
- welding or other cold or hot manufacturing processes may need to be followed by an adequate heat treatment.

2 Steels for hull structure

2.1 Application

2.1.1 Tab 1 gives the mechanical characteristics of steels currently used in the construction of inland navigation vessels.

2.1.2 Higher strength steels other than those indicated in Tab 1 are considered by the Society on a case by case basis.

2.1.3 When steels with a minimum yield stress \(R_{\text{ey}} \) greater than 235 N/mm\(^2\) are used, hull scantlings are to be determined by taking into account the material factor \(k \) defined in [2.4].

2.1.4 When no other information is available, the minimum yield stress \(R_{\text{ey}} \) and the Young’s modulus \(E \) of steels used at temperatures between 90°C and 300°C may be taken respectively equal to:

\[
R_{\text{ey}} = R_{\text{ey0}} \left(1, 04 + \frac{0.75}{1000} \theta\right)
\]

\[
E = E_0 \left(1, 03 + \frac{0.5}{1000} \theta\right)
\]

where:

- \(R_{\text{ey0}} \) : Value of the minimum yield stress at ambient temperature
- \(E_0 \) : Value of the Young’s modulus at ambient temperature
- \(\theta \) : Service temperature, in °C.

2.1.5 Characteristics of steels with specified through thickness properties are given in NR216 Materials and Welding, Ch 2, Sec 1, [9].

2.2 Information to be kept on board

2.2.1 It is advised to keep on board a plan indicating the steel types and grades adopted for the hull structures. Where steels other than those indicated in Tab 1 are used, their mechanical and chemical properties, as well as any workmanship requirements or recommendations, are to be available on board together with the above plan.

2.3 Dimensional tolerances

2.3.1 Plates and wide flats

For plates and wide flats, an under thickness tolerance of 0.3 mm is permitted.

2.3.2 Sections and bars

For sections and bars, the under thickness tolerance is to be in accordance with the requirements of a recognized international or national standard.
2.4 Material factor k

2.4.1 General

Unless otherwise specified, the material factor k is defined in Tab 2, as a function of the minimum yield stress $R_{y\text{f}}$.

For intermediate values of $R_{y\text{f}}$, k may be obtained by linear interpolation.

Steels with a yield stress lower than 235 N/mm2 or greater than 390 N/mm2 are considered by the Society on a case by case basis.

<table>
<thead>
<tr>
<th>$R_{y\text{f}}$, in N/mm2</th>
<th>k</th>
</tr>
</thead>
<tbody>
<tr>
<td>235</td>
<td>1,00</td>
</tr>
<tr>
<td>315</td>
<td>0,78</td>
</tr>
<tr>
<td>355</td>
<td>0,72</td>
</tr>
<tr>
<td>390</td>
<td>0,68</td>
</tr>
</tbody>
</table>

2.5 Grades of steel

2.5.1 Normal strength grades A, B and D

The distribution of the steel grades used in the different regions of the vessel is indicated in Tab 3.

Steel of grade D may be required for structural members consisting in plates more than 20 mm thick in areas liable to important static or dynamic stress concentrations.

<table>
<thead>
<tr>
<th></th>
<th>t ≤ 20</th>
<th>15 < t ≤ 20</th>
<th>t > 20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bilge and topside structure (1)</td>
<td>A</td>
<td>B</td>
<td>D</td>
</tr>
<tr>
<td>Side shell</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Deck and bottom</td>
<td>A</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>Deck plates at the corners of hatches</td>
<td>A</td>
<td>B</td>
<td>D</td>
</tr>
</tbody>
</table>

Note 1:
- t : Structural member gross thickness, in mm.
- (1) Sheerstrake, stringer plate, longitudinal hatch coaming of open deck vessels, trunk longitudinal bulkhead

2.5.2 High tensile strength structural steel grades AH and DH

The distribution of the steel grades used in the midship, holds or tanks regions, according to the type of vessel concerned is given in Tab 4.

Outside these regions, the thickness of high tensile strength steel must be kept unchanged until the region where the thickness of ordinary steel is the same for the vessel considered.

2.5.3 For strength members not mentioned in these tables, grade A / AH may generally be used.

<table>
<thead>
<tr>
<th></th>
<th>t ≤ 20</th>
<th>t > 20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bilge and topside structure (1)</td>
<td>AH</td>
<td>DH</td>
</tr>
<tr>
<td>Side shell</td>
<td>AH</td>
<td>AH</td>
</tr>
<tr>
<td>Deck and bottom</td>
<td>AH</td>
<td>DH</td>
</tr>
<tr>
<td>Deck plates at the corners of long hatches</td>
<td>AH</td>
<td>DH</td>
</tr>
</tbody>
</table>

Note 1:
- t : Structural member gross thickness, in mm.
- (1) Sheerstrake, stringer plate, longitudinal hatch coaming of open deck vessels, trunk longitudinal bulkhead

2.5.4 The steel grade is to correspond to the as fitted gross thickness when this is greater than the gross thickness obtained from the net thickness required by the Rules according to Ch 2, Sec 5.

2.5.5 Vessels carrying corrosive liquids

Where corrosive liquids are to be carried, the plates and sections of the hull of vessels with built-in cargo tanks and the independent cargo tanks are to be built in a material approved by the Society.

2.5.6 Vessels with ice strengthening

For vessels with ice strengthening, shell strakes in way of ice strengthening area plates are to be of a minimum grade B / AH.

2.6 Grades of steel for structures exposed to low air temperatures

2.6.1 The selection of steel grades to be used for the structural members exposed to low temperatures (−20°C or below) is to be in compliance with applicable requirements of NR216 Materials and Welding.

3 Aluminium alloy structures

3.1 General

3.1.1 The use of aluminium alloys is normally authorized, instead of steel, provided that equivalent strength is maintained.

The arrangements adopted are to comply, where applicable, with the requirements of the International Conventions and National Regulations.

3.1.2 The characteristics of aluminium alloys are to comply with the requirements of NR216 Materials and Welding, Ch 3, Sec 2.

Series 5000 aluminium-magnesium alloys or series 6000 aluminium-magnesium-silicon alloys are generally to be used (see NR216 Materials and Welding, Ch 3, Sec 2, [2]).

3.1.3 In the case of structures subjected to low service temperatures or intended for other specific applications, the alloys to be employed are to be agreed by the Society.
3.1.4 Unless otherwise agreed, the Young’s modulus for aluminium alloys is equal to 70000 N/mm² and the Poisson’s ratio equal to 0.33.

3.1.5 Use of aluminium alloys on tankers

The use of aluminium alloys is authorized for wheelhouses located aft of the aft cofferdam or forward of the fore cofferdam.

3.2 Extruded plating

3.2.1 Extrusions with built-in plating and stiffeners, referred to as extruded plating, may be used.

3.2.2 In general, the application is limited to decks, bulkheads, superstructures and deckhouses. Other uses may be permitted by the Society on a case by case basis.

3.2.3 Extruded plating is preferably to be oriented so that the stiffeners are parallel to the direction of main stresses.

3.2.4 Connections between extruded plating and primary members are to be given special attention.

3.3 Mechanical properties of weld joints

3.3.1 Welding heat input lowers locally the mechanical strength of aluminium alloys hardened by work hardening (series 5000 other than condition 0 or H111) or by heat treatment (series 6000).

3.3.2 The as welded properties of aluminium alloys of series 5000 are in general those of condition 0 or H111. Higher mechanical characteristics may be taken into account, provided they are duly justified.

3.3.3 The as welded properties of aluminium alloys of series 6000 are to be agreed by the Society.

3.4 Material factor

3.4.1 The material factor k for aluminium alloys is to be obtained from the following formula:

\[k = \frac{235}{R'_{\lim}} \]

where:

- \(R'_{\lim} \): Minimum specified yield stress of the parent metal in welded condition \(R'_{p0.2} \), in N/mm², but not to be taken greater than 70% of the minimum specified tensile strength of the parent metal in welded condition \(R'_{m} \), in N/mm²

- \(R'_{p0.2} = \eta_1 R_{p0.2} \)

- \(R'_{m} = \eta_2 R_{m} \)

- \(R_{p0.2} \): Minimum specified yield stress, in N/mm², of the parent metal in delivery condition

- \(R_{m} \): Minimum specified tensile stress, in N/mm², of the parent metal in delivery condition

\(\eta_1, \eta_2 \): Coefficients defined in Tab 5.

3.4.2 In the case of welding of two different aluminium alloys, the material factor k to be considered for the scantlings of welds is to be the greater material factor of the aluminium alloys of the assembly.

Table 5 : Aluminium alloys for welded construction

<table>
<thead>
<tr>
<th>Aluminium alloy</th>
<th>(\eta_1)</th>
<th>(\eta_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alloys without work-hardening treatment (series 5000 in annealed condition 0 or annealed flattened condition H111)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Alloys hardened by work hardening (series 5000 other than condition 0 or H111)</td>
<td>(R'{p0.2}/R{p0.2})</td>
<td>(R'{m}/R{m})</td>
</tr>
<tr>
<td>Alloys hardened by heat treatment (series 6000)</td>
<td>(R'{p0.2}/R{p0.2})</td>
<td>0.6</td>
</tr>
</tbody>
</table>

(1) When no information is available, coefficient \(\eta_1 \) is to be taken equal to the metallurgical efficiency coefficient \(\beta \) defined in Tab 6.

Note 1:

- \(R'_{p0.2} \): Minimum specified yield stress, in N/mm², of material in welded condition (see [3.3])

- \(R'_{m} \): Minimum specified tensile stress, in N/mm², of material in welded condition (see [3.3]).

Table 6 : Aluminium alloys

<table>
<thead>
<tr>
<th>Aluminium alloy</th>
<th>Temper</th>
<th>Gross thickness, in mm</th>
<th>(\beta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6005 A (Open sections)</td>
<td>T5 or T6</td>
<td>(t \leq 6)</td>
<td>0.45</td>
</tr>
<tr>
<td>6005 A (Closed sections)</td>
<td>T5 or T6</td>
<td>(t > 6)</td>
<td>0.40</td>
</tr>
<tr>
<td>6061 (Sections)</td>
<td>T6</td>
<td>All</td>
<td>0.50</td>
</tr>
<tr>
<td>6082 (Sections)</td>
<td>T6</td>
<td>All</td>
<td>0.45</td>
</tr>
</tbody>
</table>

3.4.3 For welded constructions in hardened aluminium alloys (series 5000 other than condition 0 or H111 and series 6000), greater characteristics than those in welded condition may be considered, provided that welded connections are located in areas where stress levels are acceptable for the alloy considered in annealed or welded condition.

3.5 Transition joints

3.5.1 General

The aluminium material is to comply with the applicable requirements of NR216 Materials and Welding and the steel is to be of an appropriate grade complying with the requirements of these Rules.

3.5.2 Explosion transition joints

Explosion bonded composite aluminium/steel transition joints used for the connection of aluminium structures to steel plating are to comply with the applicable requirements of NR216 Materials and Welding.

3.5.3 Rolled transition joints

The use of rolled bonded composite aluminium/steel transition joints will be examined by the Society on a case by case basis.
4 Other materials

4.1 General

4.1.1 Other materials and products such as parts made of iron castings, where allowed, products made of copper and copper alloys, rivets, anchors, chain cables, cranes, masts, derricks, accessories and wire ropes are generally to comply with the applicable requirements of NR216 Materials and Welding.

4.1.2 The use of plastics, wood or other special materials not covered by these Rules is to be considered by the Society on a case by case basis.

In such a case, the Society states the requirements for the acceptance of the materials concerned.

4.1.3 Materials used in welding processes are to comply with the applicable requirements of NR216 Materials and Welding.
SECTION 4 STRENGTH PRINCIPLES

Symbols

\[w \quad \text{: Section modulus, in cm}^3, \text{ of an ordinary stiffener or primary supporting member, as the case may be, with an attached plating of width } b_p. \]
\[h_w \quad \text{: Web height, in mm, of an ordinary stiffener or a primary supporting member, as the case may be.} \]
\[t_w \quad \text{: Web thickness, in mm, of an ordinary stiffener or a primary supporting member, as the case may be.} \]
\[b_f \quad \text{: Face plate width, in mm, of an ordinary stiffener or a primary supporting member, as the case may be.} \]
\[t_f \quad \text{: Face plate thickness, in mm, of an ordinary stiffener or a primary supporting member, as the case may be.} \]
\[t_p \quad \text{: Thickness, in mm, of the plating attached to an ordinary stiffener or a primary supporting member, as the case may be.} \]
\[s \quad \text{: Spacing, in m, of ordinary stiffeners.} \]
\[S \quad \text{: Spacing, in m, of primary supporting members.} \]
\[\ell \quad \text{: Span, in m, of an ordinary stiffener or a primary supporting member, as the case may be.} \]
\[I \quad \text{: Moment of inertia, in cm}^4, \text{ of an ordinary stiffener or a primary supporting member, as the case may be, around its neutral axis parallel to the plating.} \]
\[I_{bb} \quad \text{: Moment of inertia, in cm}^4, \text{ of an ordinary stiffener or a primary supporting member, as the case may be, with bracket and without attached plating, around its neutral axis parallel to the plating, calculated at mid-length of the bracket.} \]
\[k \quad \text{: Material factor defined in Ch 2, Sec 3, [2.4] and Ch 2, Sec 3, [3.4].} \]

1 General strength principles

1.1 Structural continuity

1.1.1 The variation in scantlings between the midship region and the fore and aft parts is to be gradual.

1.1.2 The structural continuity is to be ensured:
- in way of changes in the framing system
- at the connections of primary or ordinary stiffeners
- in way of the ends of the fore and aft parts and machinery space
- in way of ends of superstructures.

1.1.3 Longitudinal members contributing to the hull girder longitudinal strength, according to Ch 4, Sec 1, [3], are to extend continuously for a sufficient distance towards the ends of the vessel.

Ordinary stiffeners contributing to the hull girder longitudinal strength are generally to be continuous when crossing primary supporting members. Otherwise, the detail of connections is considered by the Society on a case by case basis.

Longitudinals of the bottom, bilge, sheerstrake, deck, upper and lower longitudinal bulkhead and inner side strakes, as well as the latter strakes themselves, the lower strake of the centreline bottom girder and the upper strake of the centreline deck girder, where fitted, are to be continuous through the transverse bulkheads of the cargo area and cofferdams. Alternative solutions may be examined by the Society on a case by case basis, provided they are equally effective.

1.1.4 Where stress concentrations may occur in way of structural discontinuities, adequate compensation and reinforcements are to be provided.

1.1.5 Openings are to be avoided, as far as practicable, in way of highly stressed areas.

Where necessary, the shape of openings is to be specially designed to reduce the stress concentration factors.

Openings are to be generally well rounded with smooth edges.

1.1.6 Primary supporting members are to be arranged in such a way that they ensure adequate continuity of strength. Abrupt changes in height or in cross-section are to be avoided.

1.2 Connections with higher strength steel

1.2.1 When a higher strength steel is adopted at deck, members not contributing to the longitudinal strength and welded on the strength deck (e.g. hatch coamings, strengthening of deck openings) are also generally to be made of the same higher strength steel.

1.2.2 Outside the higher strength steel area, scantlings of longitudinal elements in normal strength steel are to be calculated assuming that the midship area is made in normal strength steel.

1.2.3 Regarding welding of higher strength hull structural steel, see applicable requirements of NR216 Materials and Welding.
1.3 Connections between steel and aluminium

1.3.1 Any direct contact between steel and aluminium alloy is to be avoided (e.g. by means of zinc or cadmium plating of the steel parts and application of a suitable coating on the corresponding light alloy parts).

1.3.2 Any heterogeneous jointing system is considered by the Society on a case by case basis.

1.3.3 The use of transition joints made of aluminium/steel clad plates or profiles is considered by the Society on a case by case basis (see also Ch 2, Sec 3, [3.5]).

2 Plating

2.1 Insert plates and doublers

2.1.1 A local increase in plating thickness is generally to be achieved through insert plates. Local doublers, which are normally only allowed for temporary repair, may however be accepted by the Society on a case by case basis.

In any case, doublers and insert plates are to be made of materials of a quality at least equal to that of the plates on which they are welded.

2.1.2 On tankers for oil or chemical cargoes, doubling plates are not allowed to be fitted within the cargo tank area, i.e. from the aftermost to the foremost cofferdam bulkhead.

2.1.3 Doublers having width, in mm, greater than:

- 20 times their thickness, for thicknesses equal to or less than 15 mm
- 25 times their thickness, for thicknesses greater than 15 mm,

are to be fitted with slot welds, to be effected according to Ch 8, Sec 1, [2.6].

2.1.4 When doublers fitted on the outer shell and strength deck within 0.5 L amidships are accepted by the Society, their width and thickness are to be such that slot welds are not necessary according to the requirements in [2.1.3]. Outside this area, the possibility of fitting doublers requiring slot welds will be considered by the Society on a case by case basis.

3 Ordinary stiffeners

3.1 General

3.1.1 Stiffener not perpendicular to the attached plating

Where the stiffener is not perpendicular to the attached plating, the actual net section modulus \(w \), in \(\text{cm}^3 \), and net shear area \(A_{sh} \), in \(\text{cm}^2 \), and net moment of inertia \(I \), in \(\text{cm}^4 \), may be obtained, from the following formulae:

\[
\begin{align*}
 w & = w_0 \sin \varphi_w \\
 A_{sh} & = A_0 \sin \varphi_w \\
 I & = I_0 \sin^2 \varphi_w
\end{align*}
\]

where:

- \(w_0 \): Actual net section modulus, in \(\text{cm}^3 \), of the stiffener assumed to be perpendicular to the plating
- \(A_0 \): Actual net shear area, in \(\text{cm}^2 \), of the stiffener assumed to be perpendicular to the plating
- \(I_0 \): Net moment of inertia, in \(\text{cm}^4 \), of the stiffener assumed to be perpendicular to the attached plating
- \(\varphi_w \): Angle, in degree, between the attached plating and the web of the stiffener, measured at mid-span of the stiffener.

3.1.2 Bulb section: equivalent angle profile

A bulb section may be taken as equivalent to an angle profile.

The dimensions of the equivalent angle profile are to be obtained, in mm, from the following formulae:

\[
\begin{align*}
 h_w & = h_w' - \frac{h_w' - 2}{9.2} + 2 \\
 t_w & = t_w' \\
 b_w & = a \left[t_w' + \frac{h_w'}{6.7} - 2 \right] \\
 t_f & = \frac{h_w'}{9.2} - 2
\end{align*}
\]

where:

- \(h_w', t_w' \): Height and net thickness of the bulb section, in mm, as shown in Fig 1
- \(a \): Coefficient equal to:
 - for \(h_w' \leq 120 \): \(a = 1, I + \frac{(120 - h_w')^2}{3000} \)
 - for \(h_w' > 120 \): \(a = 1, 0 \)

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{figure1.png}
\caption{Dimensions of a bulb section}
\end{figure}

3.2 Span of ordinary stiffeners

3.2.1 General

The span \(\ell \) of ordinary stiffeners is to be measured as shown in Fig 2 to Fig 5.
3.3 Width of attached plating

3.3.1 Yielding check

The width of the attached plating to be considered for the yielding check of ordinary stiffeners is to be obtained, in m, from the following formulae:

- where the plating extends on both sides of the ordinary stiffener:
 \[b_P = s \]
- where the plating extends on one side of the ordinary stiffener (i.e. ordinary stiffeners bounding openings):
 \[b_P = 0.5 \times s \]

3.3.2 Buckling check

The attached plating to be considered for the buckling check of ordinary stiffeners is defined in Ch 2, Sec 6, [2.3].

3.4 Sections

3.4.1 The main characteristics of sections currently used are given in Ch 2, App 1.

3.5 Geometric properties

3.5.1 Built sections

The geometric properties of built sections as shown in Fig 6 may be calculated as indicated in the following formulae.

The shear sectional area of a built section with attached plating is to be obtained, in cm², from the following formula:

\[A_{sb} = \frac{h_w t_b}{100} \]

The section modulus of a built section with attached plating is obtained in mm², is to be obtained, in cm³, from the following formula:

\[w = \frac{h_w t_b}{1000} + \frac{t_w h_w^2}{6000} \left(1 + \frac{A_s - t_b}{A_s + \frac{t_w h_w}{2}} \right) \]

The distance from mid-plate thickness of face plate to neutral axis is to be obtained, in cm, from the following formula:

\[v = \frac{h_w (A_s + 0.5 t_w h_w)}{10(A_s + t_b + t_w h_w)} \]

The moment of inertia of a built section with attached plating is to be obtained, in cm⁴, from the following formula:

\[I = w \cdot v \]

These formulae are applicable provided that:

\[A_s \geq t_b \]
\[\frac{h_w}{t_w} \geq 10 \]
\[\frac{h_w}{t_f} \geq 10 \]
3.5.2 Corrugations
The net section modulus of a corrugation is to be obtained, in cm³, from the following formula:

\[w = \frac{td}{6}(3b + c)10^{-3} \]

where:
- \(t \): Net thickness of the plating of the corrugation, in mm
- \(d, b, c \): Dimensions of the corrugation, in mm, shown in Fig 7.

Where the web continuity is not ensured at ends of the bulkhead, the net section modulus of a corrugation is to be obtained, in cm³, from the following formula:

\[w = 0.5 \cdot b \cdot t \cdot d \cdot 10^{-3} \]

3.6 End connections

3.6.1 Continuous ordinary stiffeners
Where ordinary stiffeners are continuous through primary supporting members, they are to be connected to the web plating so as to ensure proper transmission of loads, e.g. by means of one of the connection details shown in Fig 7 to Fig 11. In the case of high values for the design loads, additional stiffening is required.

Connection details other than those shown in Fig 7 to Fig 11 may be considered by the Society on a case by case basis. In some cases, the Society may require the details to be supported by direct calculations submitted for review.

3.6.2 Intercostal ordinary stiffeners
Where ordinary stiffeners are cut at primary supporting members, brackets are to be fitted to ensure the structural continuity. Their section modulus and their sectional area are to be not less than those of the ordinary stiffeners.

All brackets for which:

\[\frac{\ell_b}{t} > 60 \]

where:
- \(\ell_b \): Length, in mm, of the free edge of the bracket
- \(t \): Bracket net thickness, in mm, are to be flanged or stiffened by a welded face plate.

The sectional area, in cm², of the flange or the face plate is to be not less than 0.01 \(\ell_b \).

The width of the face plate, in mm, is to be not less than 10 \(t \).

3.6.3 Snipped ends of stiffeners
Stiffeners may be snipped at the ends if the net thickness of the plating supported by the stiffener is not less than:

\[t = \frac{c \cdot psk(t - 0.5s)}{235} \]

where:
- \(p \): Stiffener design load, in kN/m², to be determined in compliance with Ch 3, Sec 4
- \(c \): Coefficient to be taken equal to:
 - 12.7 for watertight bulkheads
 - 15.7 for all other components.
4 Primary supporting members

4.1 General

4.1.1 Primary supporting member not perpendicular to the attached plating
Where the primary supporting member is not perpendicular to the attached plating, the actual section modulus may be obtained, in accordance with [3.1.1].

4.2 Span of primary supporting members

4.2.1 The span of primary supporting members is to be determined in compliance with [3.2].

4.3 Width of attached plating

4.3.1 General
The width of the attached plating of primary supporting members is to be obtained according to [4.3.2] or [4.3.3], depending on the type of loading, where:

\[S_0 = \begin{cases} S, & \text{for plating extending on both sides of the primary supporting member} \\ 0.5 S, & \text{for plating extending on one side of the primary supporting member} \end{cases} \]

\[S_1 = \begin{cases} 0.2 \ell, & \text{for plating extending on both sides of the primary supporting member} \\ 0.1 \ell, & \text{for plating extending on one side of the primary supporting member} \end{cases} \]

4.3.2 Loading type 1
Where the primary supporting members are subjected to uniformly distributed loads or else by not less than 6 equally spaced concentrated loads, the width of the attached plating is to be obtained, in m, from the following formulae:

- for \(\ell / S_0 \leq 4 \):
 \[b_P = 0.365 \left(\frac{\ell}{S_0} \right)^{0.67} \]

- for \(\ell / S_0 > 4 \):
 \[b_P = \min(S_0; S_1) \]

4.3.3 Loading type 2
Where the primary supporting members are subjected to less than 6 concentrated loads, the width of the attached plating is to be obtained, in m, from the following formulae:

- for \(\ell / S_0 < 8 \):
 \[b_P = 0.205 \left(\frac{\ell}{S_0} \right)^{0.72} \]

- for \(\ell / S_0 \geq 8 \):
 \[b_P = 0.9 S_0 \]

4.3.4 Corrugated bulkheads
The width of attached plating of corrugated bulkhead primary supporting members is to be determined as follows:

- when primary supporting members are parallel to the corrugations and are welded to the corrugation flanges, the width of the attached plating is to be calculated in accordance with [4.3.2] and [4.3.3] and is to be taken not greater than the corrugation flange width
- when primary supporting members are perpendicular to the corrugations, the width of the attached plating is to be taken equal to the width of the primary supporting member face plate.

4.4 Geometric properties

4.4.1 Built sections
The geometric properties of primary supporting members (including primary supporting members of double hull structures, such as double bottom floors and girders) are generally determined in accordance with [3.5.1], reducing the web height \(h_w \) by the depth of the cut-outs for the passage of the ordinary stiffeners, if any.

4.5 Bracketed end connections

4.5.1 Arm lengths of end brackets are to be equal, as far as practicable.

The height of end brackets is to be not less than that of the weakest primary supporting member.

4.5.2 The scantlings of end brackets are generally to be such that the section modulus of the primary supporting member with end brackets is not less than that of the primary supporting member at mid-span.

4.5.3 The bracket web thickness is to be not less than that of the weakest primary supporting member.

4.5.4 The face plate of end brackets is to have a width not less than the width of the primary supporting member face plates.

Moreover, the thickness of the face plate is to be not less than that of the bracket web.

4.5.5 In addition to the above requirements, the scantlings of end brackets are to comply with the applicable requirements given in Ch 5, Sec 2 to Ch 5, Sec 5.

4.6 Bracketless end connections

4.6.1 In the case of bracketless end connections between primary supporting members, the strength continuity is to be obtained as schematically shown in Fig 12 or by any other method which the Society may consider equivalent.

4.6.2 In general, the continuity of the face plates is to be ensured.
4.7 Cut-outs and holes

4.7.1 Cut-outs for the passage of ordinary stiffeners are to be as small as possible and well rounded with smooth edges.

In general, the height of cut-outs is to be not greater than 50% of the height of the primary supporting member. Other cases are to be covered by calculations submitted to the Society.

4.7.2 Openings may not be fitted in way of toes of end brackets.

4.7.3 Over half of the span of primary supporting members, the length of openings is to be not greater than the distance between adjacent openings.

At the ends of the span, the length of openings is to be not greater than 25% of the distance between adjacent openings.

4.7.4 In the case of large openings as shown in Fig 13, the secondary stresses in primary supporting members are to be considered for the reinforcement of the openings.

The secondary stresses may be calculated in accordance with the following procedure.

Members (1) and (2) are subjected to the following forces, moments and stresses:

\[F = \frac{M_A + M_B}{2d} \]

\[m_1 = \frac{M_A - M_B}{2} \frac{K_1}{2} \]

\[m_2 = \frac{M_A - M_B}{2} \frac{K_2}{2} \]

\[\sigma_{\text{F1}} = 10 \frac{F}{S_1} \]

\[\sigma_{\text{F2}} = 10 \frac{F}{S_2} \]

\[\sigma_{\text{m1}} = \frac{m_1}{10^3} \]

\[\sigma_{\text{m2}} = \frac{m_2}{10^3} \]

\[\tau_1 = 10 \frac{K_1 Q_1}{S_{w1}} \]

\[\tau_2 = 10 \frac{K_2 Q_2}{S_{w2}} \]

where:

\(M_A, M_B \) : Bending moments, in kN.m, in sections A and B of the primary supporting member

\(m_1, m_2 \) : Bending moments, in kN.m, in (1) and (2)

\(d \) : Distance, in m, between the neutral axes of (1) and (2)

\(\sigma_{\text{F1}}, \sigma_{\text{F2}} \) : Axial stresses, in N/mm², in (1) and (2)

\(\sigma_{\text{m1}}, \sigma_{\text{m2}} \) : Bending stresses, in N/mm², in (1) and (2)

\(Q_1 \) : Shear force, in kN, equal to \(Q_A \) or \(Q_B \), whichever is greater

\(\tau_1, \tau_2 \) : Shear stresses, in N/mm², in (1) and (2)

\(w_1, w_2 \) : Shear stress moduli, in cm³, of (1) and (2)

\(S_{w1}, S_{w2} \) : Net sectional areas, in cm², of webs in (1) and (2)
I₁, I₂ : Net moments of inertia, in cm⁴, of (1) and (2) with attached plating

\[K₁ = \frac{I₁}{I₁ + I₂} \]
\[K₂ = \frac{I₂}{I₁ + I₂} \]

The combined stress \(σ_c \) calculated at the ends of members (1) and (2) is to be obtained from the following formula:

\[σ_c = \sqrt{(σ₁ + σ₂)^2 + 3τ^2} \]

The combined stress \(σ_c \) is to comply with the checking criteria in Ch 5, Sec 1, [5.3.4] or Ch 5, Sec 1, [5.4.4], as applicable. Where these checking criteria are not complied with, the cut-out is to be reinforced according to one of the solutions shown in Fig 14 to Fig 16:
- continuous face plate (solution 1): see Fig 14
- straight face plate (solution 2): see Fig 15
- compensation of the opening (solution 3): see Fig 16
- combination of the above solutions.

Other arrangements may be accepted provided they are supported by direct calculations submitted to the Society for review.

4.8 Stiffening arrangement

4.8.1 Webs of primary supporting members are generally to be stiffened where the height, in mm, is greater than 100 t, where \(t \) is the web net thickness, in mm, of the primary supporting member.

In general, the web stiffeners of primary supporting members are to be spaced not more than 110 t.

4.8.2 Where primary supporting member web stiffeners are welded to ordinary stiffener face plates, their net sectional area at the web stiffener mid-height is to be not less than the value obtained, in cm², from the following formula:

\[A = 0,1k₁ps\ell \]

where:

\(k₁ \) : Coefficient depending on the web connection with the ordinary stiffener, to be taken as:
- \(k₁ = 0,30 \) for connections without collar plate (see Fig 8)
- \(k₁ = 0,225 \) for connections with a collar plate (see Fig 9)
- \(k₁ = 0,20 \) for connections with one or two large collar plates (see Fig 10 and Fig 11)

\(p \) : Design pressure, in kN/m², acting on the ordinary stiffener, defined in Ch 3, Sec 4.

4.8.3 The net moment of inertia, I, of the web stiffeners of primary supporting members is not to be less than the value obtained, in cm⁴, from the following formula:

- for web stiffeners parallel to the flange of the primary supporting members (see Fig 17):

\[I = C\ell^2A\frac{R_{eff}}{235} \]

- for web stiffeners normal to the flange of the primary supporting members (see Fig 18):

\[I = 11,4 st₁(2,5 \ell^2 - 2s^2)\frac{R_{eff}}{235} \]

where:

\(C \) : Slenderness coefficient to be taken as:
- \(C = 1,43 \) for longitudinal web stiffeners including snipped stiffeners
- \(C = 0,72 \) for other web stiffeners

\(\ell \) : Length, in m, of the web stiffener

\(s \) : Spacing, in m, of web stiffeners

\(t₁ \) : Web net thickness, in mm, of the primary supporting member

\(A \) : Net section area, in cm², of the web stiffener, including attached plate assuming effective breadth of 80% of stiffener spacing \(s \)

\(R_{eff} \) : Minimum specified yield stress of the material of the web plate of primary supporting member.
4.8.4 Tripping brackets (see Fig 19) welded to the face plate are generally to be fitted:

- every fourth spacing of ordinary stiffeners, without exceeding 4 m
- in way of concentrated loads.

Where the width of the symmetrical face plate is greater than 400 mm, backing brackets are to be fitted in way of the tripping brackets.

4.8.5 In general, the width of the primary supporting member face plate is to be not less than one tenth of the depth of the web, where tripping brackets are spaced as specified in [4.8.4].

4.8.6 The arm length of tripping brackets is to be not less than the greater of the following values, in m:

\[d = 0.38b \]
\[d = 0.85b \sqrt{\frac{s}{t}} \]

where:

- \(b \) : Height, in m, of tripping brackets (see Fig 19)
- \(s_i \) : Spacing, in m, of tripping brackets
- \(t \) : Net thickness, in mm, of tripping brackets.

5 Hull scantling principle

5.1 Calculation point

5.1.1 General

The calculation point is to be considered with respect to the reference co-ordinate system defined in Ch 1, Sec 2, [3.1].

5.1.2 Plating

The elementary plate panel is the smallest unstiffened part of plating.

Unless otherwise specified, the loads are to be calculated:

- for longitudinal framing, at the lower edge of the elementary plate panel or, in the case of horizontal plating, at the point of minimum y-value among those of the elementary plate panel considered
- for transverse framing, at the lower edge of the strake.

5.1.3 Ordinary stiffeners

a) Lateral pressure

Unless otherwise specified, the loads are to be calculated at mid-span of the ordinary stiffener considered

b) Hull girder stresses

For longitudinal ordinary stiffeners contributing to the hull girder longitudinal strength, the hull girder normal stresses are to be calculated in way of the attached plating of the stiffener considered.

5.1.4 Primary supporting members

a) Lateral pressure

Unless otherwise specified, the loads are to be calculated at mid-span of the primary supporting member considered

b) Hull girder stresses

For longitudinal ordinary stiffeners contributing to the hull girder longitudinal strength, the hull girder normal stresses are to be calculated in way of the neutral axis of the primary supporting member with attached plating.

5.2 Span correction coefficients

5.2.1 Ordinary stiffeners

These Rules apply to ordinary stiffeners without end brackets, with a bracket at one end or with two equal end brackets.

The span correction coefficients \(\beta_b \) and \(\beta_s \) of ordinary stiffeners are to be determined using the following formulae:

\[\beta_b = \left(1 - \sum_{i=1}^{n} \frac{L_i}{L} \right)^2 \]
\[\beta_s = \left(1 - \sum_{i=1}^{n} \frac{L_i}{L} \right) \]
where:
\[\ell : \text{Span, in m, of ordinary stiffener, defined in [3.2]} \]
\[\ell_{bi} = 0.5 \ell_b \]
\[\ell_b = \text{MIN}(d ; b) \]
\[d, b : \text{Length, in m, of bracket arms} \]
\[n : \text{Number of end brackets.} \]

5.2.2 Primary supporting members

Conventional parameters of end brackets are given in Fig 20. Special consideration is to be given to conditions different from those shown.

The span correction coefficients \(\beta_b \) and \(\beta_s \) of primary supporting members are to be determined using the following formulae:

\[\beta_b = \left(1 - \sum_{i=1}^{n} \frac{\ell_{bi}}{\ell_b} \right)^2 \]
\[\beta_s = \left(1 - \sum_{i=1}^{n} \frac{\ell_{si}}{\ell_s} \right)^2 \]

where:
\[\ell : \text{Span, in m, of primary supporting member, defined in [4.2.1]} \]
\[\ell_{bi} = \ell_b - 0.25 h_W \]
\[\ell_s = \text{MIN}(d ; b) \]
\[d, b : \text{Lengths, in m, of bracket arms, defined in Fig 20} \]
\[h_W : \text{Height, in m, of the primary supporting member (see Fig 20)} \]
\[n : \text{Number of end brackets.} \]

5.3 Coefficients for pressure distribution correction

5.3.1 The scantlings of non-horizontal structural members are to be determined using the coefficients for pressure distribution correction \(\lambda_b \) and \(\lambda_s \) defined as follows:

\[\lambda_b = 2 \lambda_{bi} - 1 \]
\[\lambda_s = 1 + 0.2 \frac{P_d - P_u}{P_d + P_u} \]

where:
\[p_u : \text{Pressure, in kN/m}^2, \text{at the upper end of the structural member considered} \]
\[p_d : \text{Pressure, in kN/m}^2, \text{at the lower end of the structural member considered} \]
\[p_{uw}, p_{wd} : \text{Still water pressure and wave pressure respectively, in kN/m}^2, \text{at the upper end of the structural member considered} \]
\[p_{ud}, p_{wd} : \text{Still water pressure and wave pressure respectively, in kN/m}^2, \text{at the lower end of the structural member considered}. \]
SECTION 5

NET SCANTLING APPROACH

1 Application criteria

1.1 General

1.1.1 The scantlings obtained by applying the criteria specified in these Rules are net scantlings, i.e. those which provide the strength characteristics required to sustain the loads, excluding any addition for corrosion. Exceptions are the scantlings of:

- rudder structures and hull appendages in Part B, Chapter 7
- massive pieces made of steel forgings, steel castings or iron castings.

1.1.2 The required strength characteristics are:

- thickness, for plating including that which constitutes primary supporting members
- section modulus, shear sectional area, moments of inertia and local thickness, for ordinary stiffeners and, as the case may be, primary supporting members
- section modulus, moments of inertia and single moment for the hull girder.

1.1.3 The vessel is to be built at least with the gross scantlings obtained by reversing the procedure described in [2.1].

2 Net strength characteristic calculation

2.1 Designer’s proposal based on gross scantlings

2.1.1 General criteria

If the designer provides the gross scantlings of each structural element, the structural checks are to be carried out on the basis of the net strength characteristics, derived as specified in [2.1.2] to [2.1.5].

2.1.2 Plating

The net thickness is to be obtained by deducting the corrosion addition \(t_c \), from the gross thickness.

2.1.3 Ordinary stiffeners

The net transverse section is to be obtained by deducting the corrosion addition \(t_c \), from the gross thickness of the elements which constitute the stiffener profile.

2.2 Designer’s proposal based on net scantlings

The net strength characteristics are to be calculated for the net transverse section. As an alternative, the net section modulus of bulb profiles may be obtained from the following formula:

\[
\ell = \ell_G (1 - \alpha t_c) - \beta t_c
\]

where:

\(\ell_G \): Stiffener gross section modulus, in cm³
\(\alpha \), \(\beta \): Coefficients defined in Tab 1.

Table 1 : Coefficients \(\alpha \) and \(\beta \) for bulb profiles

<table>
<thead>
<tr>
<th>Range of (\ell_G)</th>
<th>(\alpha)</th>
<th>(\beta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\ell_G \leq 200 \text{ cm}^3)</td>
<td>0,070</td>
<td>0,4</td>
</tr>
<tr>
<td>(\ell_G > 200 \text{ cm}^3)</td>
<td>0,035</td>
<td>7,4</td>
</tr>
</tbody>
</table>

2.1.4 Primary supporting members

The net transverse section is to be obtained by deducting the corrosion addition \(t_c \), from the gross thickness of the elements which constitute the primary supporting members.

The net strength characteristics are to be calculated for the net transverse section.

2.1.5 Hull girder

For the hull girder, the net hull girder transverse sections are to be considered as being constituted by plating and stiffeners having net scantlings calculated on the basis of the corrosion additions \(t_c \), according to [2.1.2] to [2.1.4].

2.2.1 Net strength characteristics and corrosion additions

If the designer provides the net scantlings of each structural element, the structural checks are to be carried out on the basis of the proposed net strength characteristics.

The designer is also to provide the corrosion additions or the gross scantlings of each structural element. The proposed corrosion additions are to be not less than the values specified in [3].

2.2.2 Hull girder net strength characteristic calculation

For the hull girder, the net hull girder transverse sections are to be considered as being constituted by plating and stiffeners having the net scantlings proposed by the designer.
3 Corrosion additions

3.1 Values of corrosion additions

3.1.1 General
The values of the corrosion additions specified in this Article are to be applied in relation to the relevant corrosion protection measures prescribed in Ch 8, Sec 2, [1]. The designer may define values of corrosion additions greater than those specified in [3.1.2] and [3.1.3].

3.1.2 Corrosion additions for steel other than stainless steel
The corrosion addition for each of the two sides, \(t_{c1} \) or \(t_{c2} \), of a structural member is specified in Tab 2.

The total corrosion addition \(t_C \), in mm, for both sides of a structural member, is equal to:
- for a plating with a gross thickness greater than 10 mm:
 \[t_C = t_{c1} + t_{c2} \]
- for a plating with a gross thickness less than or equal to 10 mm:
 - \(t_C = 20\% \) of the gross thickness of the plating, or
 - \(t_C = t_{c1} + t_{c2} \)
 whichever is smaller.

For an internal member within a given compartment, the total corrosion addition \(t_C \) is to be determined as follows:
- for a plating or a stiffener plating with a gross thickness greater than 10 mm:
 \[t_C = 2 \times t_{c1} \]
- for a plating or a stiffener plating with a gross thickness less than or equal to 10 mm:
 - \(t_C = 20\% \) of the gross thickness of the plating considered, or
 - \(t_C = 2 \times t_{c1} \)
 whichever is smaller,

where \(t_{c1} \) is the value of the corrosion addition specified in Tab 2 for one side exposure to that compartment.

3.1.3 Corrosion additions for stainless steel and aluminium alloys
For structural members made of stainless steel or aluminium alloys, the corrosion addition is to be taken equal to 0.

Table 2: Corrosion additions, in mm, for one side exposure (\(t_{c1} \) or \(t_{c2} \))

<table>
<thead>
<tr>
<th>Compartment type</th>
<th>Corrosion addition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ballast tank</td>
<td>1,00</td>
</tr>
<tr>
<td>Cargo tank and fuel oil tank</td>
<td>Plating of horizontal surfaces</td>
</tr>
<tr>
<td></td>
<td>Plating of non-horizontal surfaces</td>
</tr>
<tr>
<td></td>
<td>Ordinary stiffeners</td>
</tr>
<tr>
<td></td>
<td>Primary supporting members</td>
</tr>
<tr>
<td>Dry bulk cargo hold</td>
<td>General</td>
</tr>
<tr>
<td></td>
<td>Inner bottom plating</td>
</tr>
<tr>
<td></td>
<td>Side plating for single hull vessel</td>
</tr>
<tr>
<td></td>
<td>Inner side plating for double hull vessel</td>
</tr>
<tr>
<td></td>
<td>Transverse bulkhead plating</td>
</tr>
<tr>
<td></td>
<td>Frames</td>
</tr>
<tr>
<td></td>
<td>Ordinary stiffeners</td>
</tr>
<tr>
<td></td>
<td>Primary supporting members</td>
</tr>
<tr>
<td>Hopper well of dredging vessels</td>
<td>2,00</td>
</tr>
<tr>
<td>Accommodation space</td>
<td>0,00</td>
</tr>
<tr>
<td>Compartment and area other than those mentioned above</td>
<td>0,50</td>
</tr>
</tbody>
</table>

(1) Corrosion additions are applicable to all the members of the considered item.
SECTION 6 BUCKLING AND ULTIMATE STRENGTH OF ORDINARY STIFFENERS AND STIFFENED PANELS

Symbols

\(k \) : Material factor, defined in Ch 2, Sec 3, [2.4] and Ch 2, Sec 3, [3.4]
\(t \) : Net plate thickness, in mm
\(a \) : Length of single or partial plate field, in mm (see Fig 1)
\(b \) : Breadth of single plate field, in mm (see Fig 1)
\(\alpha \) : Aspect ratio of single plate field:
\(\alpha = \frac{a}{b} \)
\(n_s \) : Number of single plate field breadths within the partial or total plate field
\(\sigma_x \) : Membrane stress in x-direction, in N/mm²
\(\sigma_y \) : Membrane stress in y-direction, in N/mm²
\(\psi \) : Edge stress ratio taken equal to:
\(\psi = \frac{\sigma_2}{\sigma_1} \)
where:
\(\sigma_1 \) : Maximum compressive stress
\(\sigma_2 \) : Minimum compressive stress or tensile stress
\(F_1 \) : Correction factor for boundary condition of stiffeners on the longer side of elementary plate panels:
- \(F_1 = 1.00 \) for stiffeners sniped at both ends
- \(F_1 = 1.05 \) for flat bar
- \(F_1 = 1.10 \) for bulb sections
- \(F_1 = 1.20 \) for angle or T-sections
- \(F_1 = 1.30 \) for girders of high rigidity (e.g. bottom transverses)
\(\sigma_E \) : Reference stress, in N/mm²:
\(\sigma_E = 0.9 \frac{E}{b} \left(\frac{1}{b} \right)^2 \)
\(E \) : Young’s modulus, in N/mm²:
- \(E = 2.06 \cdot 10^5 \) for steel, in general
- \(E = 1.95 \cdot 10^5 \) for stainless steel
- \(E = 7.00 \cdot 10^4 \) for aluminium alloys
\(R_{ut} \) : for hull structural steels:
- \(R_{ut} \) is the nominal yield point, in N/mm²
- for aluminium alloys:
 \(R_{ut} \) is 0.2% proof stress, in N/mm²
\(\Sigma \) : Safety factor:
- \(\Sigma = 1.12 \) in general
- \(\Sigma = 1.22 \) for constructions of aluminium alloys

\(\lambda \) : Reference degree of slenderness
\(\lambda = \frac{R_{ut}}{\sqrt{K\sigma_1}} \)
\(K \) : Buckling factor according to Tab 1.

1 General

1.1 Application

1.1.1 The requirements of this Section apply for the buckling check of structural members and plating.

1.1.2 Other buckling rules can be accepted if agreed with the Society.

2 Proof of single plate fields

2.1 Load cases

2.1.1 Load case 1
Plate panels are considered as being simply supported and subjected to membrane stresses in x-direction acting along the side "b" (see Fig 2).

Figure 1 : Structural elements

Figure 2 : Load case 1
2.1.2 Load case 2
Plate panels are considered as being simply supported and subjected to membrane stresses in y-direction acting along the side “a” (see Fig 3).

Figure 3 : Load case 2

2.1.3 Load case 3
Plate panels as in load case 1 but with side “a” free in way of edge “b” end subjected to highest stresses (see Fig 4).

Figure 4 : Load case 3

2.1.4 Load case 4
Plate panels as in load case 2 but with side “b” free in way of edge “a” end subjected to highest stresses (see Fig 5).

Figure 5 : Load case 4

2.2 Plating

2.2.1 Proof is to be provided that the following conditions are complied with for the single plate field a - b:

- Load case 1 and load case 3:
 \[\frac{\sigma_X \Sigma}{\kappa_X R_{uh}} \leq 1 \]
- Load case 2 and load case 4:
 \[\frac{\sigma_Y \Sigma}{\kappa_Y R_{uh}} \leq 1 \]

The reduction factors \(\kappa_X \) and \(\kappa_Y \) are given in Tab 1. Where \(\sigma_X \leq 0 \) and \(\sigma_Y \leq 0 \) (tension stresses), \(\kappa_X \) and \(\kappa_Y \) are equal to 1,0.

2.3 Effective width of plating

2.3.1 The effective width of plating may be determined by the following formulae (see Fig 1):

- for longitudinal stiffeners:
 \[b_m = \kappa_X b \]
- for transverse stiffeners:
 \[a_m = \kappa_Y a \]

The effective width of plating is not to be taken greater than the value obtained from Ch 2, Sec 4, [3.3] or Ch 2, Sec 4, [4.3].

2.4 Webs and flanges

2.4.1 For non-stiffened webs and flanges of sections and girders, proof of sufficient buckling strength as for single plate fields is to be provided according to [2.2].

Within 0,5 L amidships, the following guidance values are recommended for the ratio web depth to web thickness and/or flange breadth to flange thickness:

- flat bars:
 \[h_w / t_w \leq 19,5 \, k^{0,5} \]
- angles, tees and bulb sections:
 - for web:
 \[h_w / t_w \leq 60 \, k^{0,5} \]
 - for flange:
 \[b_i / t_i \leq 19,5 \, k^{0,5} \]

where:

\[b_i : \text{Parameter defined in Fig 6 and equal to:} \]
\[b_i = \text{MAX} (b_1 ; b_2) \]

Figure 6 : Section dimensions
3 Proof of partial and total fields

3.1 Longitudinal and transverse stiffeners

3.1.1 Proof is to be provided that the continuous longitudinal and transverse stiffeners of partial (see Fig 1) and total plate fields comply with the condition set out in [3.2] and [3.3].

Table 1 : Plane plate fields

<table>
<thead>
<tr>
<th>Load case</th>
<th>Edge stress ratio ψ</th>
<th>Aspect ratio α</th>
<th>Buckling factor K</th>
<th>Reduction factor κ</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOAD CASE 1</td>
<td>$1 \geq \psi > 0$</td>
<td>$\alpha > 1$</td>
<td>$K = \frac{8.4}{\psi + 1,1}$</td>
<td>$\kappa_x = 1$ for $\lambda \leq \lambda_c$</td>
</tr>
<tr>
<td></td>
<td>$0 > \psi > -1$</td>
<td>$\alpha > 1$</td>
<td>$K = 7.63 - \psi (6,26 - 10 \psi)$</td>
<td>$\kappa_x = C \left(\frac{1}{\lambda^3} \right)$ for $\lambda > \lambda_c$</td>
</tr>
<tr>
<td></td>
<td>$\psi \leq -1$</td>
<td>$\alpha > 1$</td>
<td>$K = 5,975 (1 - \psi)^2$</td>
<td>$C = (1,25 - 0,12 \psi) \leq 1,25$</td>
</tr>
<tr>
<td>LOAD CASE 2</td>
<td>$1 \geq \psi > 0$</td>
<td>$\alpha \geq 1$</td>
<td>$K = F_1 \left(\frac{1 + \frac{1}{\alpha^2}}{\psi + 1,1} \right)$</td>
<td>$\kappa_x = C \left(\frac{1}{\lambda^2} \right)$ for $\lambda > \lambda_c$</td>
</tr>
<tr>
<td></td>
<td>$0 > \alpha > 1,5$</td>
<td>$\psi \leq -1$</td>
<td>$K = F_1 \left[3,975 \left(1 - \frac{1}{\alpha} \right)^2 + 0,5375 \left(1 - \frac{1}{\alpha^2} \right) + 1,87 \right]$</td>
<td>$\lambda_c = C \left(\frac{1}{\lambda^1} \right)$</td>
</tr>
<tr>
<td>LOAD CASE 3</td>
<td>$1 \geq \psi > -1$</td>
<td>$\alpha > 0$</td>
<td>$K = \left(0,425 + \frac{1}{\alpha^2} \right) \frac{(3 - \psi)}{2}$</td>
<td>$\lambda_c = C \left(\frac{1}{\lambda^1} \right)$ for $\lambda > 0,7$</td>
</tr>
<tr>
<td>LOAD CASE 4</td>
<td>$1 \geq \psi > -1$</td>
<td>$\alpha > 0$</td>
<td>$K = \left(0,425 + \frac{1}{\alpha^2} \right) \frac{(3 - \psi)}{2}$</td>
<td>$\lambda_c = C \left(\frac{1}{\lambda^1} \right)$ for $\lambda > 0,7$</td>
</tr>
</tbody>
</table>

3.2 Lateral buckling

3.2.1 The following relation is to be complied with:

$$\frac{\sigma_y + \sigma_z}{R_{st}} \leq 1$$

where:

- σ_y : Uniformly distributed compressive stress, in N/mm², in the direction of the stiffener axis:
 - $\sigma_y = \sigma_x$ for longitudinal stiffeners
 - $\sigma_y = \sigma_y$ for transverse stiffeners
\[p_Z : \text{Nominal lateral load of the stiffener due to} \ \sigma_b \]

\[\sigma_b = \frac{M_b + M_t}{w_b10^3} \]

with:
\[M_b : \text{Bending moment due to deformation} w_d \text{ of stiffener, in N:mm:} \]

\[M_b = F_{kx} \frac{P_z w_d}{c_b - P_z} \]

with \((c_b - P_z) > 0\)
\[F_{kx} : \text{Ideal buckling force of the stiffener, in N:} \]

\[F_{kx} = \frac{\pi^2 E I_x}{(n_b \cdot b)^2} 10^4 \]

\[l_x : \text{Moment of inertia, in cm}^4, \text{of the longitudinal stiffener including effective width of plating according to [2.3]:} \]

\[l_x \geq \frac{bt^3}{12 \cdot 10^4} \]

\[l_y : \text{Moment of inertia, in cm}^4, \text{of the transverse stiffener including effective width of plating according to [2.3]:} \]

\[l_y \geq \frac{at^3}{12 \cdot 10^4} \]

\[P_z : \text{Nominal lateral load of the stiffener due to} \ \sigma_x \ \text{and} \ \sigma_y, \text{in N/mm}^2: \]

\[P_{zx} = \frac{1}{b} \left[\sigma_x \left(\frac{2b}{a} \right)^2 + 2c_x \sigma_y \right] \]

with:
\[\sigma_{x1} = \sigma_x \left(1 + \frac{A_x}{bt} \right) \]

\[c_x, c_y : \text{Factors taking into account the stresses vertical to the stiffener’s axis and distributed variable along the stiffener’s length:} \]

\[c_x, c_y = 0.5 \ (1 + \Psi) \ \text{for} \ 0 \leq \Psi \leq 1 \]

\[c_x, c_y = 0.5 \ / \ (1 - \Psi) \ \text{for} \ \Psi < 0 \]

\[A_x, A_y : \text{Sectional area, in mm}^2, \text{of the longitudinal or transverse stiffener respectively, without attached plating} \]

\[w_d : \text{Value calculated as follows:} \]

\[w_d = w_{d0} + w_{d1} \]

with:
\[w_{d0} : \text{Assumed imperfection, in mm, taken equal to:} \]

- for longitudinal stiffeners:
 \[w_{d0} = \text{MIN} \left(\frac{a}{250} ; \frac{b}{250} ; 10 \right) \]

- for transverse stiffeners:
 \[w_{d0} = \text{MIN} \left(\frac{a}{250} ; \frac{n_b b}{250} ; 10 \right) \]

For stiffeners snipped at both ends \(w_{d0}\) is not to be taken less than the distance from the midpoint of platting to the neutral axis of the profile including effective width of plating

\[w_{d1} : \text{Deformation of stiffener due to lateral load} \ p \text{ (in kN/m}^2\) at midpoint of stiffener span, in mm. \]

In case of uniformly distributed load, the following values for \(w_{d1}\) may be used:

- for longitudinal stiffeners:
 \[w_{d1} = \frac{n_b a^4}{384 \cdot 10^4 E I_x} \]

- for transverse stiffeners:
 \[w_{d1} = \frac{5a^3 (n_b b)^4}{384 \cdot 10^4 E I_y c_y} \]

\[c_i : \text{Elastic support provided by the stiffener, in N/mm}^2: \]

- for longitudinal stiffeners:
 \[c_{ix} = F_{kx} \frac{\pi^2}{a^2} (1 + c_{ix}) \]

with:
\[c_{ix} = \frac{1}{0.91 \left(\frac{1}{12 \cdot 10^4 L_x} - 1 \right) \frac{1}{1 + \frac{c_{ix}}{1}}} \]

\[c_{ixa} = \left(\frac{a}{2b} + \frac{2b}{a} \right)^2 \text{ for } a \geq 2b \]

\[c_{ixa} = \left(1 + \left(\frac{a}{2b} \right)^2 \right) \text{ for } a < 2b \]

- for transverse stiffeners:
 \[c_{iy} = c_{iy} \frac{\pi^2}{(n_b b)^2} (1 + c_{iy}) \]

with:
\[c_{iy} = \frac{1}{0.91 \left(\frac{1}{12 \cdot 10^4 L_x} - 1 \right) \frac{1}{1 + \frac{c_{iy}}{1}}} \]

\[c_{iya} = \left(\frac{n_b b}{2a} + \frac{2a}{n_b b} \right)^2 \\text{ for } n_b b \geq 2a \]

\[c_{iya} = \left[1 + \left(\frac{n_b b}{2a} \right)^2 \right] \text{ for } n_b b < 2a \]
\(w_{St} \) : Net section modulus of stiffener (longitudinal or transverse), in \(\text{cm}^3 \), including effective width of plating according to [2.3], taken equal to:

- if a lateral pressure is applied on the stiffener:

 \(w_{St} \) is the net section modulus calculated at flange if the lateral pressure is applied on the same side as the stiffener

 \(w_{St} \) is the net section modulus calculated at attached plate if the lateral pressure is applied on the side opposite to the stiffener

- if no lateral pressure is applied on the stiffener:

 \(w_{St} \) is the minimum net section modulus among those calculated at flange and attached plate

\(M_1 \) : Bending moment due to the lateral load \(p \), in N.mm:

- for continuous longitudinal stiffeners:

 \[
 M_1 = \frac{pba^2}{24 \cdot 10^3}
 \]

- for transverse stiffeners:

 \[
 M_1 = \frac{pa(n_b)^2}{c_5 \cdot 8 \cdot 10^3}
 \]

\(c_5 \) : Factor accounting for the boundary conditions of the transverse stiffener:

- for simply supported stiffeners: \(c_5 = 1.0 \)
- for partially constraint stiffeners: \(c_5 = 2.0 \)

\(p \) : Lateral load, in kN/m², determined at the calculation point as defined in Ch 2, Sec 4, [5.1].

If no lateral load \(p \) is acting, the bending stress \(\sigma_b \) is to be calculated at the midpoint of the stiffener span for that fibre which results in the largest stress value.

If a lateral load \(p \) is acting, the stress calculation is to be carried out for both fibres of the stiffener’s cross sectional area (if necessary for the bi-axial stress field at the plating side).

3.3 Stiffeners not subjected to lateral load

3.3.1 Longitudinal and transverse stiffeners not subjected to lateral load

Longitudinal and transverse stiffeners not subjected to lateral load \(p \) have sufficient scantlings if their moments of inertia \(I_x \) and \(I_y \), in \(\text{cm}^4 \), are not less than obtained by the following formulae:

\[
I_x = \frac{D_{xx}a^2}{\pi^2 10^4} \left(\frac{w_{min} h_w}{\Sigma - \sigma_x} + \frac{a^2}{\pi^2 E} \right)
\]

\[
I_y = \frac{D_{yy}a^2}{\pi^2 10^4} \left[\frac{w_{min} h_w}{\Sigma - \sigma_y} + \frac{(n_b)^2}{\pi^2 E} \right]
\]
APPENDIX 1

GEOMETRIC PROPERTIES OF STANDARD SECTIONS

1 Angles, flats and bulb flats

1.1 Notice

1.1.1 Tab 1 and Tab 2 give the main characteristics of angles, bulb flats and flats currently used, with an attached plating 500 mm wide having a thickness equal to that of the section web.

1.1.2 The sections are listed in the order of increasing values of the section moduli. For each section, the data are listed in the following order:

- dimensions of the rolled section, in mm
- then, between brackets:
 - the sectional area, in cm², of the section
 - the section modulus, in cm³, with the attached plating defined in [1.1.1]
 - the mean variation of the section modulus, in cm³, for each 10% variation in sectional area of the attached plating.

The values shown in Tab 1 and Tab 2 are, as a rule, valid for sectional area of the attached plating variations not exceeding 50%.

1.1.3 Examples

a) Consider a DIN bulb flat 200 x 9 welded to a 600 x 10 plating. The data shown in Tab 1 are:

\[200 \times 9 \ (23,60 \ 209,1 \ 1,98) \]

where:

\[23,60 \ : \ \text{Sectional area, in cm}^2, \ \text{of the section} \]
\[209,1 \ : \ \text{Section modulus, in cm}^3, \ \text{with an attached plating 9 mm thick and 500 mm wide} \]
\[1,98 \ : \ \text{Mean increase of the section modulus for each 10\% increase in sectional area of the attached plating.} \]

The section modulus obtained is thus equal to:

\[209,1 + 1,98 \ (60 - 45) \ 10 / 45 = 215,7 \ \text{cm}^3 \]

b) If the same bulb flat is attached to a 400 x 8 plating, then the section modulus will be:

\[209,1 + 1,98 \ (32 - 45) \ 10 / 45 = 203,4 \ \text{cm}^3 \]

2 Channels

2.1 Notice

2.1.1 Tab 3 gives the main characteristics of European standard channels currently used, with an attached plating 500 mm wide having a thickness equal to that of the channel web (a).

2.1.2 The channels are listed in the order of increasing values of the section moduli. For each channel, the data are listed in the following order:

- standard designation of the channel section
- dimensions of the channel, in mm
- sectional area, in cm², of the channel
- section modulus, in cm³, with the attached plating defined in [2.1.1].

<p>| Table 1 : Geometric particulars with 500 mm wide attached plating of standard AFNOR and DIN unequal angles and bulb flats |
|---|---|---|
| w (cm³) | Unequal angles | Bulb flats |
| 2 | 30 x 20 x 3 | (1.42 2.5 0.02) |
| 3 | 40 x 20 x 3 | (1.72 3.7 0.02) |
| 4 | 40 x 20 x 4 | (2.25 4.8 0.04) |
| 5 | 45 x 30 x 3 | (2.19 5.7 0.03) |
| 7 | 45 x 30 x 4 | (2.87 7.5 0.05) |
| 9 | 45 x 30 x 5 | (3.53 9.1 0.08) |
| 10 | 50 x 40 x 4 | (3.46 10.5 0.06) |
| | 50 x 30 x 5 | (3.78 10.6 0.08) |
| 11 | 60 x 4 | (3.58 11.0 0.07) |
| 12 | 50 x 40 x 5 | (4.27 12.8 0.1) |
| | 60 x 5 | (4.18 12.4 0.09) |
| 13 | 60 x 30 x 5 | (4.29 13.7 0.1) |
| 14 | 60 x 6 | (4.78 14.0 0.13) |
| 16 | 60 x 40 x 5 | (4.79 16.3 0.11) |</p>
<table>
<thead>
<tr>
<th>w (cm^3)</th>
<th>Unequal angles</th>
<th>Bulb flats</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>60 x 30 x 7</td>
<td>(5.85, 18.5, 0.18)</td>
</tr>
<tr>
<td>19</td>
<td>60 x 40 x 6</td>
<td>(5.68, 19.4, 0.15)</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>80 x 5</td>
</tr>
<tr>
<td>21</td>
<td>65 x 50 x 5</td>
<td>(5.54, 21.4, 0.14)</td>
</tr>
<tr>
<td>22</td>
<td>60 x 40 x 7</td>
<td>(6.55, 22.4, 0.2)</td>
</tr>
<tr>
<td>23</td>
<td></td>
<td>80 x 6</td>
</tr>
<tr>
<td>25</td>
<td>75 x 50 x 5</td>
<td>(6.04, 25.9, 0.16)</td>
</tr>
<tr>
<td>27</td>
<td>75 x 55 x 5</td>
<td>(6.30, 27.8, 0.17)</td>
</tr>
<tr>
<td>29</td>
<td>80 x 40 x 6</td>
<td>(6.89, 29.1, 0.2)</td>
</tr>
<tr>
<td>35</td>
<td>75 x 50 x 7</td>
<td>(8.3, 35.3, 0.27)</td>
</tr>
<tr>
<td>36</td>
<td>65 x 50 x 9</td>
<td>(9.58, 36.5, 0.38)</td>
</tr>
<tr>
<td>37</td>
<td>80 x 40 x 8</td>
<td>(9.01, 37.7, 0.33)</td>
</tr>
<tr>
<td>39</td>
<td></td>
<td>100 x 7</td>
</tr>
<tr>
<td>40</td>
<td>80 x 65 x 6</td>
<td>(8.41, 40.4, 0.27)</td>
</tr>
<tr>
<td>43</td>
<td></td>
<td>100 x 8</td>
</tr>
<tr>
<td>44</td>
<td>75 x 50 x 9</td>
<td>(10.5, 44.4, 0.43)</td>
</tr>
<tr>
<td>46</td>
<td>100 x 50 x 6</td>
<td>(8.73, 46.0, 0.31)</td>
</tr>
<tr>
<td>47</td>
<td>75 x 55 x 9</td>
<td>(10.9, 47.3, 0.44)</td>
</tr>
<tr>
<td>50</td>
<td></td>
<td>120 x 6</td>
</tr>
<tr>
<td>52</td>
<td>80 x 65 x 8</td>
<td>(11.0, 52.4, 0.42)</td>
</tr>
<tr>
<td>55</td>
<td></td>
<td>120 x 7</td>
</tr>
<tr>
<td>57</td>
<td>90 x 60 x 8</td>
<td>(11.4, 57.8, 0.46)</td>
</tr>
<tr>
<td>59</td>
<td>100 x 50 x 8</td>
<td>(11.5, 59.9, 0.48)</td>
</tr>
<tr>
<td>60</td>
<td>90 x 75 x 7</td>
<td>(11.1, 60.0, 0.42)</td>
</tr>
<tr>
<td>63</td>
<td>100 x 65 x 7</td>
<td>(11.2, 63.0, 0.45)</td>
</tr>
<tr>
<td>64</td>
<td>80 x 65 x 10</td>
<td>(13.6, 64.2, 0.63)</td>
</tr>
<tr>
<td>69</td>
<td>100 x 75 x 7</td>
<td>(11.9, 69.3, 0.49)</td>
</tr>
<tr>
<td>73</td>
<td>100 x 50 x 10</td>
<td>(14.1, 73.0, 0.67)</td>
</tr>
<tr>
<td>77</td>
<td></td>
<td>140 x 7</td>
</tr>
<tr>
<td>79</td>
<td>100 x 65 x 9</td>
<td>(14.2, 79.1, 0.66)</td>
</tr>
<tr>
<td>83</td>
<td></td>
<td>140 x 8</td>
</tr>
<tr>
<td>87</td>
<td>100 x 75 x 9</td>
<td>(15.1, 87.3, 0.72)</td>
</tr>
<tr>
<td>90</td>
<td></td>
<td>140 x 9</td>
</tr>
<tr>
<td>94</td>
<td>100 x 65 x 11</td>
<td>(17.1, 94.6, 0.91)</td>
</tr>
<tr>
<td>102</td>
<td>130 x 65 x 8</td>
<td>(15.1, 102.0, 0.79)</td>
</tr>
<tr>
<td>104</td>
<td>100 x 75 x 11</td>
<td>(18.2, 104.5, 0.99)</td>
</tr>
<tr>
<td>111</td>
<td>130 x 75 x 8</td>
<td>(15.9, 111.3, 0.85)</td>
</tr>
<tr>
<td>113</td>
<td></td>
<td>160 x 8</td>
</tr>
<tr>
<td>122</td>
<td></td>
<td>160 x 9</td>
</tr>
<tr>
<td>124</td>
<td>130 x 65 x 10</td>
<td>(18.6, 124.7, 1.07)</td>
</tr>
<tr>
<td>127</td>
<td>120 x 80 x 10</td>
<td>(19.1, 127.9, 1.08)</td>
</tr>
<tr>
<td>136</td>
<td>130 x 75 x 10</td>
<td>(19.6, 136.2, 1.16)</td>
</tr>
<tr>
<td>146</td>
<td>130 x 65 x 12</td>
<td>(22.1, 146.9, 1.41)</td>
</tr>
<tr>
<td>w (cm³)</td>
<td>Unequal angles</td>
<td>Bulb flats</td>
</tr>
<tr>
<td>---------</td>
<td>----------------</td>
<td>------------</td>
</tr>
<tr>
<td>150</td>
<td>150 x 75 x 9</td>
<td>180 x 8</td>
</tr>
<tr>
<td></td>
<td>(19,5 150,4 1,23)</td>
<td>(18,9 151,9 1,36)</td>
</tr>
<tr>
<td></td>
<td>120 x 80 x 12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(22,7 150,9 1,43)</td>
<td></td>
</tr>
<tr>
<td>151</td>
<td>130 x 90 x 10</td>
<td>180 x 9</td>
</tr>
<tr>
<td></td>
<td>(21,2 154,9 1,30)</td>
<td>(20,7 162,2 1,51)</td>
</tr>
<tr>
<td>154</td>
<td>130 x 75 x 12</td>
<td>180 x 10</td>
</tr>
<tr>
<td></td>
<td>(23,3 106,8 1,52)</td>
<td>(22,5 174,5 1,67)</td>
</tr>
<tr>
<td>160</td>
<td>120 x 80 x 14</td>
<td>180 x 11</td>
</tr>
<tr>
<td></td>
<td>(26,2 173,1 1,82)</td>
<td>(24,3 186,4 1,85)</td>
</tr>
<tr>
<td>162</td>
<td>150 x 75 x 11</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(23,6 180,7 1,62)</td>
<td></td>
</tr>
<tr>
<td>173</td>
<td>130 x 90 x 12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(25,1 182,1 1,69)</td>
<td></td>
</tr>
<tr>
<td>174</td>
<td>180 x 10</td>
<td></td>
</tr>
<tr>
<td>180</td>
<td>160 x 80 x 10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(24,2 201,3 1,70)</td>
<td></td>
</tr>
<tr>
<td>201</td>
<td>150 x 90 x 10</td>
<td>200 x 9</td>
</tr>
<tr>
<td></td>
<td>(23,6 209,1 1,98)</td>
<td></td>
</tr>
<tr>
<td>209</td>
<td>160 x 80 x 14</td>
<td>200 x 10</td>
</tr>
<tr>
<td></td>
<td>(27,5 220,8 2,04)</td>
<td>(25,6 222,0 2,17)</td>
</tr>
<tr>
<td>220</td>
<td>150 x 90 x 12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(27,5 224,2 2,10)</td>
<td></td>
</tr>
<tr>
<td>222</td>
<td>160 x 80 x 12</td>
<td>200 x 11</td>
</tr>
<tr>
<td></td>
<td>(27,6 236,8 2,38)</td>
<td></td>
</tr>
<tr>
<td>224</td>
<td>150 x 100 x 10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(28,7 237,2 2,17)</td>
<td></td>
</tr>
<tr>
<td>236</td>
<td>180 x 90 x 10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(26,2 240,8 2,12)</td>
<td></td>
</tr>
<tr>
<td>237</td>
<td>150 x 100 x 12</td>
<td>200 x 12</td>
</tr>
<tr>
<td></td>
<td>(31,8 257,2 2,60)</td>
<td>(29,6 251,3 2,61)</td>
</tr>
<tr>
<td>240</td>
<td>160 x 80 x 14</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(33,2 272,8 2,71)</td>
<td></td>
</tr>
<tr>
<td>251</td>
<td>150 x 100 x 14</td>
<td>220 x 10</td>
</tr>
<tr>
<td></td>
<td>(36,1 327,3 3,31)</td>
<td>(29,0 283,8 2,83)</td>
</tr>
<tr>
<td>257</td>
<td>180 x 90 x 12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(38,4 351,5 3,36)</td>
<td></td>
</tr>
<tr>
<td>272</td>
<td>200 x 100 x 12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(39,6 369,3 3,88)</td>
<td></td>
</tr>
<tr>
<td>283</td>
<td>250 x 90 x 10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(42,6 392,0 3,74)</td>
<td></td>
</tr>
<tr>
<td>284</td>
<td>200 x 100 x 10</td>
<td>220 x 11</td>
</tr>
<tr>
<td></td>
<td>(36,4 392,3 3,66)</td>
<td>(31,2 299,0 3,07)</td>
</tr>
<tr>
<td>297</td>
<td>180 x 90 x 14</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(42,9 392,3 3,66)</td>
<td></td>
</tr>
<tr>
<td>299</td>
<td>200 x 100 x 12</td>
<td>220 x 12</td>
</tr>
<tr>
<td></td>
<td>(42,9 392,3 3,66)</td>
<td>(33,4 312,9 3,32)</td>
</tr>
<tr>
<td>312</td>
<td>200 x 100 x 14</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(42,9 392,3 3,66)</td>
<td></td>
</tr>
<tr>
<td>327</td>
<td>250 x 90 x 10</td>
<td>240 x 10</td>
</tr>
<tr>
<td></td>
<td>(38,4 404,2 4,11)</td>
<td>(32,4 344,9 3,57)</td>
</tr>
<tr>
<td>344</td>
<td>200 x 100 x 14</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(38,4 404,2 4,11)</td>
<td></td>
</tr>
<tr>
<td>351</td>
<td>200 x 100 x 12</td>
<td>240 x 11</td>
</tr>
<tr>
<td></td>
<td>(38,4 404,2 4,11)</td>
<td>(34,9 369,3 3,88)</td>
</tr>
<tr>
<td>368</td>
<td>250 x 90 x 10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(38,4 404,2 4,11)</td>
<td></td>
</tr>
<tr>
<td>382</td>
<td>200 x 100 x 12</td>
<td>240 x 11</td>
</tr>
<tr>
<td></td>
<td>(38,4 404,2 4,11)</td>
<td>(34,9 369,3 3,88)</td>
</tr>
<tr>
<td>386</td>
<td>250 x 90 x 10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(38,4 404,2 4,11)</td>
<td></td>
</tr>
<tr>
<td>404</td>
<td>200 x 100 x 14</td>
<td>240 x 12</td>
</tr>
<tr>
<td></td>
<td>(40,3 404,2 4,11)</td>
<td>(37,3 386,8 4,17)</td>
</tr>
<tr>
<td>447</td>
<td>200 x 100 x 14</td>
<td>260 x 11</td>
</tr>
<tr>
<td></td>
<td>(40,3 404,2 4,11)</td>
<td>(38,7 447,0 4,83)</td>
</tr>
<tr>
<td>452</td>
<td>250 x 90 x 12</td>
<td>260 x 12</td>
</tr>
<tr>
<td></td>
<td>(39,6 452,6 4,65)</td>
<td>(41,3 468,5 5,18)</td>
</tr>
<tr>
<td>456</td>
<td>200 x 100 x 16</td>
<td>260 x 13</td>
</tr>
<tr>
<td></td>
<td>(45,7 456,5 4,90)</td>
<td>(43,9 489,5 5,52)</td>
</tr>
<tr>
<td>468</td>
<td>200 x 100 x 16</td>
<td>260 x 13</td>
</tr>
<tr>
<td></td>
<td>(45,7 456,5 4,90)</td>
<td>(43,9 489,5 5,52)</td>
</tr>
<tr>
<td>489</td>
<td>250 x 90 x 14</td>
<td>280 x 11</td>
</tr>
<tr>
<td></td>
<td>(45,9 521,3 5,60)</td>
<td>(42,6 532,8 6,05)</td>
</tr>
<tr>
<td>501</td>
<td>200 x 100 x 16</td>
<td>280 x 13</td>
</tr>
<tr>
<td></td>
<td>(45,9 521,3 5,60)</td>
<td>(48,3 584,6 7,02)</td>
</tr>
<tr>
<td>504</td>
<td>250 x 90 x 16</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(52,1 588,3 6,61)</td>
<td></td>
</tr>
</tbody>
</table>
Table 2: Geometric particulars with 500 mm wide attached plating of standard AFNOR and DIN flats and equal angles

<table>
<thead>
<tr>
<th>w (cm³)</th>
<th>Flats</th>
<th>Equal angles</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>50 x 4</td>
<td>(2,0 3,6 0,03)</td>
</tr>
<tr>
<td>4</td>
<td>50 x 5</td>
<td>(2,5 4,6 0,05)</td>
</tr>
<tr>
<td>5</td>
<td>50 x 6</td>
<td>(3,0 5,7 0,08)</td>
</tr>
<tr>
<td>6</td>
<td>60 x 5</td>
<td>(3,0 6,4 0,06)</td>
</tr>
<tr>
<td></td>
<td>55 x 6</td>
<td>(3,3 6,7 0,08)</td>
</tr>
<tr>
<td>7</td>
<td>60 x 6</td>
<td>(3,6 7,8 0,09)</td>
</tr>
<tr>
<td>9</td>
<td>65 x 6</td>
<td>(3,9 9,1 0,1)</td>
</tr>
<tr>
<td></td>
<td>60 x 7</td>
<td>(5,2 9,4 0,12)</td>
</tr>
<tr>
<td>10</td>
<td>45 x 4</td>
<td>(3,49 10,1 0,06)</td>
</tr>
<tr>
<td>11</td>
<td>40 x 6</td>
<td>(4,48 11,5 0,13)</td>
</tr>
<tr>
<td>12</td>
<td>70 x 7</td>
<td>(4,9 12,4 0,14)</td>
</tr>
<tr>
<td></td>
<td>65 x 8</td>
<td>(5,2 12,6 0,17)</td>
</tr>
<tr>
<td>14</td>
<td>70 x 8</td>
<td>(5,6 14,4 0,18)</td>
</tr>
<tr>
<td>16</td>
<td>75 x 8</td>
<td>(6,0 16,3 0,20)</td>
</tr>
<tr>
<td>18</td>
<td>80 x 8</td>
<td>(6,4 18,3 0,21)</td>
</tr>
<tr>
<td>20</td>
<td>50 x 6</td>
<td>(5,69 18,0 0,15)</td>
</tr>
<tr>
<td></td>
<td>55 x 5</td>
<td>(5,32 18,7 0,13)</td>
</tr>
<tr>
<td>21</td>
<td>50 x 7</td>
<td>(6,56 20,7 0,21)</td>
</tr>
<tr>
<td>22</td>
<td>90 x 8</td>
<td>(7,2 22,8 0,24)</td>
</tr>
<tr>
<td>23</td>
<td>80 x 10</td>
<td>(8,0 23,6 0,33)</td>
</tr>
<tr>
<td>25</td>
<td>90 x 9</td>
<td>(8,1 25,9 0,30)</td>
</tr>
<tr>
<td>26</td>
<td>50 x 9</td>
<td>(8,24 26,0 0,34)</td>
</tr>
<tr>
<td></td>
<td>60 x 6</td>
<td>(6,91 26,3 0,19)</td>
</tr>
<tr>
<td>27</td>
<td>100 x 8</td>
<td>(8,0 27,7 0,28)</td>
</tr>
<tr>
<td>28</td>
<td>55 x 8</td>
<td>(8,23 28,6 0,30)</td>
</tr>
<tr>
<td>29</td>
<td>90 x 10</td>
<td>(9,0 29,2 0,37)</td>
</tr>
<tr>
<td>w (cm³)</td>
<td>Flats</td>
<td>Equal angles</td>
</tr>
<tr>
<td>--------</td>
<td>-------</td>
<td>--------------</td>
</tr>
<tr>
<td>31</td>
<td>65 x 65 x 6</td>
<td>(7,53 31,1 0,22)</td>
</tr>
<tr>
<td>34</td>
<td>60 x 60 x 8</td>
<td>(9,03 34,1 0,33)</td>
</tr>
<tr>
<td>35</td>
<td>100 x 10 (10,0 35,4 0,42)</td>
<td>65 x 65 x 7</td>
</tr>
<tr>
<td>36</td>
<td>70 x 70 x 6</td>
<td>(8,13 36,1 0,25)</td>
</tr>
<tr>
<td>37</td>
<td>110 x 9 (9,9 37,5 0,39)</td>
<td>65 x 65 x 8</td>
</tr>
<tr>
<td>38</td>
<td>120 x 8 (9,6 38,8 2,98)</td>
<td>70 x 70 x 7</td>
</tr>
<tr>
<td>39</td>
<td>70 x 70 x 6</td>
<td>(8,13 36,1 0,25)</td>
</tr>
<tr>
<td>40</td>
<td>110 x 10 (11,0 42,1 0,47)</td>
<td>70 x 70 x 8</td>
</tr>
<tr>
<td>41</td>
<td>100 x 12 (12,0 43,5 0,59)</td>
<td>75 x 75 x 7</td>
</tr>
<tr>
<td>42</td>
<td>130 x 8 (10,4 45,1 0,43)</td>
<td>120 x 10 (12,0 49,5 0,54)</td>
</tr>
<tr>
<td>43</td>
<td>110 x 11 (12,1 46,8 0,56)</td>
<td>130 x 9 (11,7 51,2 0,52)</td>
</tr>
<tr>
<td>44</td>
<td>140 x 8 (11,2 51,9 0,50)</td>
<td>140 x 8 (11,2 51,9 0,50)</td>
</tr>
<tr>
<td>45</td>
<td>70 x 70 x 9</td>
<td>(11,9 52,1 0,49)</td>
</tr>
<tr>
<td>46</td>
<td>70 x 70 x 8</td>
<td>(11,5 54,1 0,45)</td>
</tr>
<tr>
<td>47</td>
<td>80 x 80 x 7</td>
<td>(10,8 54,5 0,39)</td>
</tr>
<tr>
<td>48</td>
<td>130 x 10 (13,0 57,3 0,61)</td>
<td>130 x 10 (13,0 57,3 0,61)</td>
</tr>
<tr>
<td>49</td>
<td>150 x 8 (12,0 59,0 0,57)</td>
<td>150 x 8 (12,0 59,0 0,57)</td>
</tr>
<tr>
<td>50</td>
<td>120 x 12 (14,4 60,5 0,74)</td>
<td>120 x 12 (14,4 60,5 0,74)</td>
</tr>
<tr>
<td>51</td>
<td>80 x 80 x 8</td>
<td>(12,3 61,6 0,49)</td>
</tr>
<tr>
<td>52</td>
<td>70 x 70 x 11</td>
<td>(14,3 62,2 0,71)</td>
</tr>
<tr>
<td>53</td>
<td>130 x 11 (14,3 63,6 0,72)</td>
<td>140 x 10 (14,0 65,8 0,70)</td>
</tr>
<tr>
<td>54</td>
<td>75 x 75 x 10</td>
<td>(14,1 66,0 0,65)</td>
</tr>
<tr>
<td>55</td>
<td>80 x 80 x 10</td>
<td>(15,1 75,1 0,72)</td>
</tr>
<tr>
<td>56</td>
<td>75 x 75 x 12</td>
<td>(16,7 77,5 0,91)</td>
</tr>
<tr>
<td>57</td>
<td>90 x 90 x 8</td>
<td>(13,9 78,2 0,60)</td>
</tr>
<tr>
<td>58</td>
<td>140 x 12 (16,8 80,2 0,93)</td>
<td>150 x 10 (15,0 74,8 0,79)</td>
</tr>
<tr>
<td>59</td>
<td>90 x 90 x 9</td>
<td>(15,5 87,0 0,72)</td>
</tr>
<tr>
<td>60</td>
<td>80 x 80 x 12</td>
<td>(17,9 88,7 0,99)</td>
</tr>
<tr>
<td>61</td>
<td>150 x 12 (18,0 91,1 1,05)</td>
<td>150 x 12 (18,0 91,1 1,05)</td>
</tr>
<tr>
<td>62</td>
<td>90 x 90 x 10</td>
<td>(17,1 95,7 0,86)</td>
</tr>
<tr>
<td>63</td>
<td>100 x 100 x 8</td>
<td>(15,5 97,0 0,73)</td>
</tr>
<tr>
<td>64</td>
<td>80 x 80 x 14</td>
<td>(20,6 101,7 1,31)</td>
</tr>
<tr>
<td>65</td>
<td>90 x 90 x 11</td>
<td>(18,7 104,3 1,00)</td>
</tr>
<tr>
<td>66</td>
<td>150 x 14 (21,0 107,8 1,34)</td>
<td>150 x 14 (21,0 107,8 1,34)</td>
</tr>
<tr>
<td>67</td>
<td>90 x 90 x 12</td>
<td>(20,3 112,7 1,17)</td>
</tr>
<tr>
<td>68</td>
<td>150 x 15 (22,5 116,3 1,51)</td>
<td>150 x 15 (22,5 116,3 1,51)</td>
</tr>
<tr>
<td>69</td>
<td>100 x 100 x 10</td>
<td>(19,2 119,2 1,03)</td>
</tr>
</tbody>
</table>
Table 3: Geometric particulars with 500 mm wide attached plating of European standard channels

<table>
<thead>
<tr>
<th>Shape</th>
<th>h x b x a (mm)</th>
<th>A (cm²)</th>
<th>W (cm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPN 8</td>
<td>80 x 45 x 6</td>
<td>11,0</td>
<td>35,8</td>
</tr>
<tr>
<td>UPN 10</td>
<td>100 x 50 x 6</td>
<td>13,5</td>
<td>54,0</td>
</tr>
<tr>
<td>UPN 12</td>
<td>120 x 55 x 7</td>
<td>17,0</td>
<td>80,5</td>
</tr>
<tr>
<td>UPN 14</td>
<td>140 x 60 x 7</td>
<td>20,4</td>
<td>111,9</td>
</tr>
<tr>
<td>UPN 16</td>
<td>160 x 65 x 7,5</td>
<td>24,0</td>
<td>149,0</td>
</tr>
<tr>
<td>UPN 18</td>
<td>180 x 70 x 8</td>
<td>28,0</td>
<td>193,5</td>
</tr>
<tr>
<td>UPN 20</td>
<td>200 x 75 x 8,5</td>
<td>32,2</td>
<td>245,1</td>
</tr>
<tr>
<td>UPN 22</td>
<td>220 x 80 x 9</td>
<td>37,4</td>
<td>311,4</td>
</tr>
<tr>
<td>UPN 24</td>
<td>240 x 85 x 9,5</td>
<td>42,3</td>
<td>380,9</td>
</tr>
<tr>
<td>UPN 26</td>
<td>260 x 90 x 10</td>
<td>48,3</td>
<td>468,4</td>
</tr>
<tr>
<td>UPN 28</td>
<td>280 x 95 x 10</td>
<td>53,4</td>
<td>557,3</td>
</tr>
<tr>
<td>UPN 30</td>
<td>300 x 100 x 10</td>
<td>58,8</td>
<td>656,5</td>
</tr>
</tbody>
</table>

Table 3 : Geometric particulars with 500 mm wide attached plating of European standard channels

<table>
<thead>
<tr>
<th>Shape</th>
<th>h x b x a (mm)</th>
<th>A (cm²)</th>
<th>W (cm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPN 8</td>
<td>80 x 45 x 6</td>
<td>11,0</td>
<td>35,8</td>
</tr>
<tr>
<td>UPN 10</td>
<td>100 x 50 x 6</td>
<td>13,5</td>
<td>54,0</td>
</tr>
<tr>
<td>UPN 12</td>
<td>120 x 55 x 7</td>
<td>17,0</td>
<td>80,5</td>
</tr>
<tr>
<td>UPN 14</td>
<td>140 x 60 x 7</td>
<td>20,4</td>
<td>111,9</td>
</tr>
<tr>
<td>UPN 16</td>
<td>160 x 65 x 7,5</td>
<td>24,0</td>
<td>149,0</td>
</tr>
<tr>
<td>UPN 18</td>
<td>180 x 70 x 8</td>
<td>28,0</td>
<td>193,5</td>
</tr>
<tr>
<td>UPN 20</td>
<td>200 x 75 x 8,5</td>
<td>32,2</td>
<td>245,1</td>
</tr>
<tr>
<td>UPN 22</td>
<td>220 x 80 x 9</td>
<td>37,4</td>
<td>311,4</td>
</tr>
<tr>
<td>UPN 24</td>
<td>240 x 85 x 9,5</td>
<td>42,3</td>
<td>380,9</td>
</tr>
<tr>
<td>UPN 26</td>
<td>260 x 90 x 10</td>
<td>48,3</td>
<td>468,4</td>
</tr>
<tr>
<td>UPN 28</td>
<td>280 x 95 x 10</td>
<td>53,4</td>
<td>557,3</td>
</tr>
<tr>
<td>UPN 30</td>
<td>300 x 100 x 10</td>
<td>58,8</td>
<td>656,5</td>
</tr>
</tbody>
</table>

Table 3 : Geometric particulars with 500 mm wide attached plating of European standard channels

<table>
<thead>
<tr>
<th>Shape</th>
<th>h x b x a (mm)</th>
<th>A (cm²)</th>
<th>W (cm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPN 8</td>
<td>80 x 45 x 6</td>
<td>11,0</td>
<td>35,8</td>
</tr>
<tr>
<td>UPN 10</td>
<td>100 x 50 x 6</td>
<td>13,5</td>
<td>54,0</td>
</tr>
<tr>
<td>UPN 12</td>
<td>120 x 55 x 7</td>
<td>17,0</td>
<td>80,5</td>
</tr>
<tr>
<td>UPN 14</td>
<td>140 x 60 x 7</td>
<td>20,4</td>
<td>111,9</td>
</tr>
<tr>
<td>UPN 16</td>
<td>160 x 65 x 7,5</td>
<td>24,0</td>
<td>149,0</td>
</tr>
<tr>
<td>UPN 18</td>
<td>180 x 70 x 8</td>
<td>28,0</td>
<td>193,5</td>
</tr>
<tr>
<td>UPN 20</td>
<td>200 x 75 x 8,5</td>
<td>32,2</td>
<td>245,1</td>
</tr>
<tr>
<td>UPN 22</td>
<td>220 x 80 x 9</td>
<td>37,4</td>
<td>311,4</td>
</tr>
<tr>
<td>UPN 24</td>
<td>240 x 85 x 9,5</td>
<td>42,3</td>
<td>380,9</td>
</tr>
<tr>
<td>UPN 26</td>
<td>260 x 90 x 10</td>
<td>48,3</td>
<td>468,4</td>
</tr>
<tr>
<td>UPN 28</td>
<td>280 x 95 x 10</td>
<td>53,4</td>
<td>557,3</td>
</tr>
<tr>
<td>UPN 30</td>
<td>300 x 100 x 10</td>
<td>58,8</td>
<td>656,5</td>
</tr>
</tbody>
</table>
Part B
Hull Design and Construction

Chapter 3
DESIGN LOADS

SECTION 1 GENERAL
SECTION 2 HULL GIRDER LOADS
SECTION 3 VESSEL MOTIONS AND ACCELERATIONS
SECTION 4 LOCAL LOADS
Section 1 General

Symbols

\(M_{\text{VV}} \) : Vertical wave bending moment, in kN.m
\(M_{\text{WH}} \) : Horizontal wave bending moment, in kN.m
\(Q_{\text{W}} \) : Vertical wave shear force, in kN.m
\(h_1 \) : Reference value of the relative motion, in m, defined in Ch 3, Sec 3, [2.2.1].
\(h_2 \) : Reference value of the relative motion, in m, defined in Ch 3, Sec 3, [2.2.1]
\(D \) : Depth, in m, defined in Ch 1, Sec 2, [2.3]
\(T \) : Draught, in m, defined in Ch 1, Sec 2, [2.4].

1 Definitions

1.1 Still water loads

1.1.1 Still water loads are those acting on the vessel at rest in calm water.

1.2 Wave loads

1.2.1 Wave loads are those due to wave pressures and vessel motions, which can be assumed to have the same wave encounter period.

1.3 Dynamic loads

1.3.1 Dynamic loads are those that have a duration much shorter than the period of the wave loads.

1.4 Local loads

1.4.1 Local loads are pressures and forces which are directly applied to the individual structural members: plating panels, ordinary stiffeners and primary supporting members.

- Still water local loads are constituted by the hydrostatic external river pressures and the static pressures and forces induced by the weights carried in the vessel spaces.
- Wave local loads are constituted by the external river pressures due to waves and the inertial pressures and forces induced by the vessel accelerations applied to the weights carried in the vessel spaces.

1.5 Hull girder loads

1.5.1 Hull girder loads are still water and wave forces and moments which result as effects of local loads acting on the vessel as a whole and considered as a beam.

1.6 Loading condition

1.6.1 A loading condition is a distribution of weights carried in the vessel spaces arranged for their storage.

1.7 Load case

1.7.1 A load case is a state of the vessel structures subjected to a combination of hull girder and local loads.

1.8 Service conditions

1.8.1 Service conditions correspond to intact vessel in operating conditions.

2 Application criteria

2.1 Application

2.1.1 Requirements applicable to all types of vessels

The still water and wave induced loads defined in this Chapter are to be used for the determination of the hull girder strength and structural scantlings in the central part. The design loads to be used for the determination of the structural scantlings of other vessel structures are specified in Part B, Chapter 6.

2.1.2 Requirements applicable to specific vessel types

The design loads applicable to specific vessel types are to be defined in accordance with the requirements in Part D.

2.1.3 Load direct calculation

As an alternative to the formulae given in Ch 3, Sec 2, [4] and Ch 3, Sec 3, the Society may accept the values of wave induced loads derived from direct calculations, when justified on the basis of the vessel’s characteristics and intended service. The calculations are to be submitted to the Society for review.

2.2 Hull girder loads

2.2.1 The hull girder loads to be used are specified in:
- Ch 4, Sec 2, for the determination of the hull girder strength
- Part B, Chapter 5, for the determination of the structural scantling of plating, ordinary stiffeners and primary supporting members contributing to the hull girder strength, in combination with the local loads given in Ch 3, Sec 4.
2.3 Local loads

2.3.1 Load cases
The local loads defined in [1.4] are to be calculated in each of the mutually exclusive load cases described in [4].

2.3.2 Vessel motions and accelerations
The wave local loads are to be calculated on the basis of the reference values of vessel motions and accelerations specified in Ch 3, Sec 3.

2.3.3 Calculation and application of local loads
The criteria for calculating:
- still water local loads
- wave local loads on the basis of the reference values of vessel motions and accelerations,
are specified in Ch 3, Sec 4, [2] for river pressures and in Ch 3, Sec 4, [3] for internal pressures and forces.

2.4 Load definition criteria to be adopted in structural analyses based on plate or isolated beam structural models

2.4.1 Application
The requirements of this sub-article apply for the definition of local loads to be used in the scantling checks of:
- plating
- ordinary stiffeners
- primary supporting members for which a three dimensional structural model is not required, according to Ch 5, Sec 1, [5.3].

2.4.2 Cargo and ballast distribution
When calculating the local loads for the structural scantling of an element which separates two adjacent compartments, the latter may not be considered simultaneously loaded. The local loads to be used are those obtained considering the two compartments individually loaded.

For elements of the outer shell, the local loads are to be calculated considering separately:
- the external pressures considered as acting alone without any counteraction from the vessel interior
- the differential pressures (internal pressure minus external pressure) considering the compartment adjacent to the outer shell as being loaded.

2.4.3 Draught T1 associated with each cargo and ballast distribution
Local loads are to be calculated on the basis of the vessel draught T1 corresponding to the cargo or lightship distribution considered according to the criteria [2.4.2]. The vessel draught is to be taken as the distance measured vertically on the hull transverse section at the middle of the length L from the base line to the waterline in:

\[T1 \]

- full load condition, when:
 - one or more cargo compartments are considered as being loaded and the ballast tanks are considered as being empty
 - the external pressures are considered as acting alone without any counteraction from the vessel’s interior
- lightship condition, when one or more ballast tanks are considered as being loaded and the cargo compartments are considered as being empty.

Where the value of T1 is not provided, it may be taken as follows:
- for cargo carriers which include:
 - Cargo vessels, see Pt A, Ch 1, Sec 3, [2]
 - Tankers, see Pt A, Ch 1, Sec 3, [3]
 - Vessels for dredging activities, see Pt A, Ch 1, Sec 3, [5]
 \[T1 \] as defined in Tab 1.
- for non-cargo carriers
 \[T1 \] as defined in Tab 2.

<table>
<thead>
<tr>
<th>Loading condition</th>
<th>External counter pressure</th>
<th>External design pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Harbour 1R and Nonhomload</td>
<td>0,20D</td>
<td>T</td>
</tr>
<tr>
<td>2R</td>
<td>0,575</td>
<td>0,575</td>
</tr>
<tr>
<td>Navigation Full load</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>Lightship</td>
<td>0,20D</td>
<td>0,20D</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Loading condition</th>
<th>External counter pressure</th>
<th>External design pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full load condition (Navigation)</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>Pontoon</td>
<td>0,21D</td>
<td>0,21D</td>
</tr>
<tr>
<td>Passenger vessel</td>
<td>0,41D</td>
<td>0,41D</td>
</tr>
<tr>
<td>Tug/Pusher</td>
<td>0,28D</td>
<td>0,28D</td>
</tr>
<tr>
<td>Others</td>
<td>0,20D</td>
<td>0,20D</td>
</tr>
</tbody>
</table>

2.5 Load definition criteria to be adopted in structural analyses based on three dimensional structural models

2.5.1 Application
The requirements of this sub-article apply to the definition of local loads to be used in the scantling checks of primary supporting members for which a three dimensional structural model is required, according to Ch 5, Sec 1, [5].
2.5.2 Loading conditions
For all vessel types for which analyses based on three dimensional models are required according to Ch 5, Sec 1, [5], the most severe loading conditions for the structural elements under investigation are to be considered. These loading conditions are to be selected among those envisaged for the vessel operation.

Further criteria applicable to specific vessel types are specified in Part D.

2.5.3 Draught T₁, associated with each loading condition
Local loads are to be calculated on the basis of the vessel’s draught T₁ corresponding to the loading condition considered according to the criteria in [2.5.2].

3 Standard loading conditions

3.1 Cargo vessels and tank vessels

3.1.1 Lightship
For non-propelled cargo vessels (see Pt A, Ch 1, Sec 3, [2]) and tank vessels (see Pt A, Ch 1, Sec 3, [3]), the vessel is assumed empty, without supplies nor ballast.

For self-propelled cargo vessels and tank vessels, the light standard loading conditions are:
- supplies: 100%
- ballast: 50%.

3.1.2 Full load condition
For non-propelled cargo vessels (see Pt A, Ch 1, Sec 3, [2]) and tank vessels (see Pt A, Ch 1, Sec 3, [3]), the vessel is considered to be homogeneously loaded at its maximum draught, without supplies nor ballast.

For self-propelled cargo vessels and tank vessels, the vessel is considered to be homogeneously loaded at its maximum draught with 10% of supplies (without ballast).

3.1.3 Transitory conditions
Transitory standard conditions are defined in [3.1.4] to [3.1.6].

For non-propelled cargo vessels (see Pt A, Ch 1, Sec 3, [2]) and tank vessels (see Pt A, Ch 1, Sec 3, [3]), the vessel is assumed without supplies nor ballast.

For self-propelled cargo vessels and tank vessels, the vessel without ballast, is assumed to carry following amount of supplies:
- in hogging condition: 100% of supplies
- in sagging condition: 10% of supplies.

3.1.4 Loading / unloading in two runs (2R)
Loading and unloading are performed uniformly in two runs of almost equal masses, starting from one end of the cargo space, progressing towards the opposite end.

3.1.5 Loading / unloading in one run (1R)
Loading and unloading are performed uniformly in one run, starting from one end of the cargo space, progressing towards the opposite end.

3.1.6 Loading / unloading for liquid cargoes
Loading and unloading for liquid cargoes are assumed to be performed in two runs (see [3.1.4]), unless otherwise specified.

3.2 Passenger vessels

3.2.1 Lightship
The light standard loading conditions are:
- supplies: 100%
- ballast: 50%.

3.2.2 Full load condition
The vessel is considered to be homogeneously loaded at its maximum draught with:
- all passengers and crew onboard
- supplies: 100%
- ballast: empty.

3.3 Vessels for dredging activities

3.3.1 Application
The requirements under [3.3.2] to [3.3.4] apply to the following vessels for dredging activities:
- Hopper dredger
- Hopper barge
- Split hopper barge
- Split hopper dredger.

3.3.2 Lightship
For hopper barges, the vessel is assumed empty, without supplies nor ballast.

For hopper dredgers, the light standard loading conditions are:
- supplies: 100%
- ballast: empty.

3.3.3 Full load condition
For hopper barges, the vessel is considered to be homogeneously loaded at its maximum draught, without supplies nor ballast.

For hopper dredgers, the vessel is considered to be homogeneously loaded at its maximum draught with:
- supplies: 10%
- ballast: empty.

3.3.4 Working condition
The standard loading conditions are defined in a) and b) below.

For hopper barges, the vessel is assumed without supplies nor ballast.

For hopper dredgers, the vessel without ballast, is assumed to carry the following amount of supplies:
- in hogging condition: 100% of supplies
- in sagging condition: 10% of supplies.
a) Loading / unloading in two runs (2R)
Loading and unloading are performed uniformly in two runs of almost equal masses, starting from one end of the hopper space, progressing towards the opposite end.

b) Loading / unloading in one run (1R)
Loading and unloading are performed uniformly in one run, starting from one end of the hopper space, progressing towards the opposite end.

3.4 Tugs and pushers

3.4.1 The vessel is considered to be homogeneously loaded as follows:
- at minimum draught with 10% supplies
- at maximum draught with 100% supplies.

4 Load cases

4.1 General

4.1.1 The mutually exclusive load cases described in [4.2] to [4.5] are those to be used for the structural element analyses of:
- plating
- ordinary stiffeners
- primary supporting members analysed through isolated beam structural models or three dimensional structural models.

4.2 Upright vessel condition during loading/unloading in harbour (load case “a”)

4.2.1 Vessel condition
The vessel is considered in upright condition at rest in still water.

4.2.2 Local loads
The external pressure is the hydrostatic river pressure.
The internal loads are the still water loads induced by the weights carried, including those carried on decks.

4.2.3 Hull girder loads
The hull girder loads are the vertical still water bending moment and shear force.

4.3 Upright vessel condition during navigation (load case “b”)

4.3.1 Vessel condition
The vessel is considered to encounter a wave which produces a relative motion of the water stretch (both positive and negative) symmetric on the vessel sides and induces wave vertical bending moment and shear force in the hull girder. The wave is also considered to induce heave and pitch motions.

4.3.2 Local loads
The external pressure is obtained by adding to or subtracting from the hydrostatic river pressure a wave pressure corresponding to the relative motion.
The internal loads are obtained by adding the still water loads induced by the weights carried, including those carried on decks, to the loads induced by the accelerations.

4.3.3 Hull girder loads
The hull girder loads are:
- the vertical still water bending moment and shear force
- the vertical wave bending moment and the shear force.

4.4 Upright vessel condition during working (load case “b”)

4.4.1 This load case applies to vessels for dredging activities. Refer to [4.3] for vessel condition and encountered loads.

4.5 Inclined vessel condition during navigation (load cases “c” and “d”)

4.5.1 Application
The inclined vessel condition is to be taken into account for IN(x > 1,2).
Regardless of the range of navigation, the inclined vessel condition is also to be taken into account for racking analysis and strength check of vessel specific components such as:
- container supports
- movable decks and ramps
- movable wheelhouses.

4.5.2 Vessel condition
The vessel is considered to encounter a condition which produces:
- sway, roll and yaw motions
- a relative motion of the waterline anti-symmetric on the vessel sides
and induces:
- vertical wave bending moment and shear force in the hull girder
- horizontal wave bending moment in the hull girder.

4.5.3 Local loads
The external pressure is obtained by adding or subtracting from the still water head a wave head linearly variable from positive values on one side of the vessel to negative values on the other.
The internal loads are the still water loads induced by the weights carried, including those carried on decks, and the wave loads induced by the accelerations.

4.5.4 Hull girder loads
The hull girder loads are:
- the still water bending moment and shear force
- the vertical wave bending moment and shear force
- the horizontal wave bending moment.
Table 3 : Wave local loads in each load case

<table>
<thead>
<tr>
<th>Vessel condition</th>
<th>Load case</th>
<th>Reference value</th>
<th>Combination factor</th>
<th>Accelerations (a_x, a_y, a_z)</th>
<th>Combination factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upright</td>
<td>“a”</td>
<td>(h_1)</td>
<td>0,0</td>
<td>(a_{x1}; 0; a_{z1})</td>
<td>0,0</td>
</tr>
<tr>
<td></td>
<td>“b” (1)</td>
<td>(h_1)</td>
<td>1,0</td>
<td>(a_{x1}; 0; a_{z1})</td>
<td>1,0</td>
</tr>
<tr>
<td>Inclined</td>
<td>“c” (2)</td>
<td>(h_2)</td>
<td>1,0</td>
<td>0; (a_{y2}; a_{z2})</td>
<td>0,7</td>
</tr>
<tr>
<td></td>
<td>“d” (2)</td>
<td>(h_2)</td>
<td>0,5</td>
<td>0; (a_{y2}; a_{z2})</td>
<td>1,0</td>
</tr>
</tbody>
</table>

(1) For a vessel moving with a positive heave motion:
- \(h_1\) is positive
- the cargo acceleration \(a_{yi}\) is directed towards the positive part of the X axis
- the cargo acceleration \(a_{zi}\) is directed towards the negative part of the Z axis

(2) For a vessel rolling with a negative roll angle:
- \(h_2\) is positive for the points located in the positive part of the Y axis and, vice-versa, it is negative for the points located in the negative part of the Y axis
- the cargo acceleration \(a_{yi}\) is directed towards the positive part of the Y axis
- the cargo acceleration \(a_{zi}\) is directed towards the negative part of the Z axis for the points located in the positive part of the Y axis and, vice-versa, it is directed towards the positive part of the Z axis for the points located in the negative part of the Y axis.

(3) Accelerations \(a_x, a_y, a_z\) are to be considered in both directions when assessing on-board equipment foundations and supports.

Table 4 : Wave hull girder loads in each load case

<table>
<thead>
<tr>
<th>Vessel condition</th>
<th>Load case</th>
<th>Reference value</th>
<th>Comb. factor</th>
<th>Vertical bending moment</th>
<th>Reference value</th>
<th>Comb. factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upright</td>
<td>“a”</td>
<td>(M_{WV})</td>
<td>0,0</td>
<td>(M_{WH})</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td></td>
<td>“b”</td>
<td>(M_{WV})</td>
<td>1,0</td>
<td>(M_{WH})</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>Inclined</td>
<td>“c”</td>
<td>(M_{WV})</td>
<td>0,4</td>
<td>(M_{WH})</td>
<td>0,4</td>
<td>1,0</td>
</tr>
<tr>
<td></td>
<td>“d”</td>
<td>(M_{WV})</td>
<td>0,4</td>
<td>(M_{WH})</td>
<td>0,4</td>
<td>1,0</td>
</tr>
</tbody>
</table>

Table 5 : Values of wave height H

<table>
<thead>
<tr>
<th>Range of navigation</th>
<th>Wave height, H</th>
</tr>
</thead>
<tbody>
<tr>
<td>(IN(0))</td>
<td>0</td>
</tr>
<tr>
<td>(IN(0,6))</td>
<td>0,6</td>
</tr>
<tr>
<td>(IN(0,6 < x \leq 2))</td>
<td>(0,6 < H \leq 2,0)</td>
</tr>
</tbody>
</table>

5.2 Navigation coefficient \(n\)

5.2.1 The navigation coefficient to be used for the determination of vessel scantlings is given by the formula:
\[n = 0,85 \times H \]
where \(H\) is the wave height, in m, as defined in [5.1.1].

5.3 Length-to-depth ratio

5.3.1 In principle, the length-to-depth ratio is not to exceed the following values:
- for \(IN(1,2 \leq x \leq 2)\): \(L / D = 25\)
- for \(IN(0,6 < x < 1,2)\): \(L / D = 45 − 19,6 \times n\)
- for \(IN(0)\) and \(IN(0,6)\): \(L / D = 35\)

Vessels having a different ratio will be considered by the Society on a case by case basis.
SECTION 2 HULL GIRDER LOADS

Symbols

\(M_{H} \) : Design still water bending moment in hogging condition, in kN.m
\(M_{S} \) : Design still water bending moment in sagging condition, in kN.m
\(M_{W} \) : Still water bending moment in hogging condition, in kN.m (light vessel)
\(M_{L} \) : Still water bending moment in sagging condition, in kN.m (load vessel)
\(M_{H1} \) : Still water bending moment in hogging condition while loading / unloading, in kN.m
\(M_{S1} \) : Still water bending moment in sagging condition while loading / unloading, in kN.m
\(M_{TH} \) : Total vertical bending moment in hogging condition, in kN.m
\(M_{TS} \) : Total vertical bending moment in sagging condition, in kN.m
\(M_{WW} \) : Vertical wave bending moment, in kN.m, defined in [4]
\(M_{WH} \) : Horizontal wave bending moment, in kN.m, defined in [4]
\(M_{c} \) : Correction bending moment, in kN.m, given in [3.5]
\(F \) : Loading factor equal to: \(F = P / P_{T} \)
\(0.8 \leq F \leq 1.0 \)
\(P \) : Actual cargo weight, in t
\(P_{T} \) : Cargo weight, in t, corresponding to the maximum vessel draught \(T \)
\(n \) : Navigation coefficient defined in Ch 5, Sec 1, [1.3]
\(C \) : Wave parameter, taken equal to:
\(C = (10.7 - 0.0231L) \)
\(\gamma_{W1} \) : Partial safety factor covering uncertainties regarding wave hull girder loads
\(\gamma_{W1} = 1.00 \) for \(H = 0.6 \)
\(\gamma_{W1} \) as specified in Ch 5, Sec 1, [1.3] for \(H > 0.6 \)
\(\gamma_{W} \) : Coefficient, taken equal to:
\(\gamma_{W} = 1.00 \) for \(H = 0.6 \)
\(\gamma_{W} = 0.625 \gamma_{W1} \) for \(H > 0.6 \)
\(d_{AV} \) : Distance of foremost cargo area bulkhead from fore end (FE), in m
\(d_{AR} \) : Distance of aftmost cargo area bulkhead from aft end (AE), in m
\(X_{AV} \) : Distance of foremost cargo edge to foremost cargo area bulkhead
\(X_{AR} \) : Distance of aftmost cargo edge to aftmost cargo area bulkhead
\(L_{AV} \) : Distance of cargo from fore end, in m, taken equal to:
\(L_{AV} = d_{AV} + X_{AV} \)
\(L_{AR} \) : Distance of cargo from aft end, in m, taken equal to:
\(L_{AR} = d_{AR} + X_{AR} \)
\(R \) : Coefficient taken equal to:
\(R = \frac{L - L_{AV} - L_{AR}}{L} \)
\(\ell_{1} \) : Coefficients taken equal to:
\(\ell_{1} = \frac{k_{1}}{k_{2}} \)
\(\ell_{2} = \frac{k_{2}}{k_{4}} \)
\(k_{i} \) : Coefficients defined in Tab 7
\(L_{i} \) : Coefficients taken equal to:
\(L_{1} = 0.5L - \ell_{1} - L_{AV} \)
\(L_{3} = 0.5L - \ell_{2} - L_{AR} \)
\(L_{3} = 0.5L - 0.5L_{1} - L_{AV} \)
\(P_{i} \) : Coefficient taken equal to:
\(P_{i} = \frac{0.77L_{1} - FLBTC_{B}}{L - L_{AR} - L_{AV}} \)
\(M_{L} \) : Bending moment, in kN.m, taken equal to:
\(M_{L} = P_{i} (k_{2} L_{1} + k_{1} L) \)
\(R_{i} \) : Coefficients taken equal to:
\(R_{11} = \frac{0.5L - L_{AV} - L_{1}}{L - L_{AV} - L_{AR}} \)
\(R_{12} = \frac{L_{1}}{0.5L - L_{AR} - L_{1}} \)
\(R_{31} = \frac{0.5L - L_{AR} - L_{2}}{L - L_{AV} - L_{AR}} \)
\(R_{32} = \frac{L_{2}}{0.5L - L_{AR} - L_{2}} \)
1 General

1.1 Application

1.1.1 The requirements of this Section apply to vessels of types and characteristics listed hereafter:

- self-propelled cargo carriers with machinery aft with:
 \[0.60 \leq R \leq 0.82 \]
 \[0.79 \leq C_B < 0.95 \]
 \[L \geq 35 \text{ m} \]
- non-propelled cargo carriers with:
 \[0.80 \leq R \leq 0.92 \]
 \[C_B \geq 0.92 \]
 \[L \geq 35 \text{ m} \]
- passenger vessels with machinery aft with:
 \[0.79 \leq C_B < 0.95 \]
 \[L \geq 35 \text{ m} \]
- service vessels with machinery amidships.

1.1.2 The formulae given in this section are not applicable to the following:

- vessels of types other than those covered in [1.1.1]
- vessels of unusual design
- vessels with any non-homogeneous loading conditions other than standard loading conditions described in Ch 3, Sec 1
- vessels greater than 135 m in length

2 Design still water bending moments

2.1 General

2.1.1 The values of design still water bending moments, \(M_{h1} \) and \(M_{b} \), are to be provided by the designer, for all load cases considered.

All calculation documents are to be submitted to the Society.

2.1.2 If the values of design still water bending moments are not provided by the designer, they are not to be taken less than those derived from [3], in accordance with Tab 1.

<table>
<thead>
<tr>
<th>Load case</th>
<th>Hoggling</th>
<th>Sagging</th>
</tr>
</thead>
<tbody>
<tr>
<td>Navigation</td>
<td>(M_{h1} = M_{h0} + \Sigma M_c)</td>
<td>(M_b = M_{b0} - \Sigma M_c)</td>
</tr>
<tr>
<td>Harbour (1)</td>
<td>(M_{h1} = M_{h1} + \Sigma M_c)</td>
<td>(M_b = M_{b1} - \Sigma M_c)</td>
</tr>
</tbody>
</table>

(1) Applies only to cargo carriers.

Note 1: For application of \(\Sigma M_c \), see [3.5].

3 Estimated still water bending moments

3.1 General

3.1.1 The formulae given in [3.4] are not applicable to the vessels with actual lightship displacement showing at least 20% deviation from standard value derived from [3.2] or [3.3], as applicable.

3.2 Standard weights and weight distribution for non-propelled cargo carriers

3.2.1 Standard light vessel weights and weight distribution

The light vessel weight is assumed to be uniformly distributed on the vessel length, and is taken equal to, in t:

- \(P_0 = 0.12 L B D \) for \(D < 3.7 \text{ m} \)
- \(P_0 = 0.10 L B D \) for \(D \geq 3.7 \text{ m} \).

3.2.2 Standard cargo weight and cargo distribution

The cargo weight is assumed to be uniformly distributed on the cargo space, and is taken equal to, in t:

- \(P_0 = 0.9 L B T C_B \)

3.2.3 The standard weight of items not covered by [1.1.1] or [3.2.2] is to be taken equal to:

- \(P_0 = 0 \)

3.3 Standard weights and weight distribution for self-propelled cargo carriers

3.3.1 Standard light vessel weights and weight distribution

The formulae of estimated still water bending moments are based on standard weights and weight distribution defined in Tab 2.

3.3.2 Standard cargo weight and cargo distribution

The cargo weight is assumed to be uniformly distributed on the cargo space, and is taken equal to, in t:

- \(P_0 = 0.85 L B T C_B \)

3.3.3 The standard weight of items not covered by [3.3.1] or [3.3.2] is to be taken equal to:

- \(P_0 = 0 \)

3.4 Values of estimated still water bending moments

3.4.1 General

The values of the estimated still water bending moments are given hereafter by type of vessels.
3.4.2 Non-propelled cargo carriers

The hogging and sagging bending moments (amidships) in still water conditions are to be obtained, in kN.m, from formulae given in Tab 4.

3.4.3 Self-propelled cargo carriers

The hogging and sagging bending moments (amidships) in still water conditions are to be obtained, in kN.m, from formulae given in Tab 5.

3.4.4 Passenger vessels

The still water bending moments (amidships), in kN.m, for passenger vessels with machinery aft are to be determined using the following formulae:

- Still water hogging bending moment
 \[M_{bh} = 0.273 L^3 B^{1.342} D^{0.172} (1.265 - C_b) \]
- Still water sagging bending moment
 \[M_{bs} = 0 \]

Table 2 : Self-propelled cargo carriers - Standard weights and weight distribution

<table>
<thead>
<tr>
<th>Item</th>
<th>Weight (P_0), in t</th>
<th>Centre of gravity (X_0), from AE, in m</th>
<th>Location from AE, in m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hull: (D \leq 3.7) m</td>
<td>0.150 L B D</td>
<td>(0)</td>
<td>(L)</td>
</tr>
<tr>
<td>Hull: (D > 3.7) m</td>
<td>0.100 L B D</td>
<td>(0)</td>
<td>(L)</td>
</tr>
<tr>
<td>Deckhouse: (D \leq 3.7) m</td>
<td>0.010 L B D</td>
<td>(0)</td>
<td>(d_{AR})</td>
</tr>
<tr>
<td>Deckhouse: (D > 3.7) m</td>
<td>0.006 L B D</td>
<td>(0)</td>
<td>(d_{AR})</td>
</tr>
<tr>
<td>Machinery (main)</td>
<td>0.005 L B T</td>
<td>(d_{AR}/2)</td>
<td></td>
</tr>
<tr>
<td>Machinery installations</td>
<td>0.010 L B T</td>
<td>(0)</td>
<td>(d_{AR})</td>
</tr>
<tr>
<td>Piping (T)</td>
<td>0.005 L B T</td>
<td>(d_{AR})</td>
<td>(L - d_{AR})</td>
</tr>
<tr>
<td>Anchor equipment and gear</td>
<td>0.005 L B T</td>
<td>(L - d_{AR}/3)</td>
<td></td>
</tr>
<tr>
<td>Supplies (fore)</td>
<td>0.005 (\alpha_1 L B T)</td>
<td>(L - d_{AR}/2)</td>
<td></td>
</tr>
<tr>
<td>Supplies (aft)</td>
<td>0.005 (\alpha_1 L B T)</td>
<td>(d_{AR}/2)</td>
<td></td>
</tr>
<tr>
<td>Ballast (fore): (D \leq 3.7) m</td>
<td>0.010 (\alpha_2 L B D)</td>
<td>(L - d_{AR}/2)</td>
<td></td>
</tr>
<tr>
<td>Ballast (fore): (D > 3.7) m</td>
<td>0.003 (\alpha_2 L B D)</td>
<td>(L - d_{AR}/2)</td>
<td></td>
</tr>
<tr>
<td>Ballast (aft): (D \leq 3.7) m</td>
<td>0.010 (\alpha_2 L B D)</td>
<td>(d_{AR}/2)</td>
<td></td>
</tr>
<tr>
<td>Ballast (aft): (D > 3.7) m</td>
<td>0.003 (\alpha_2 L B D)</td>
<td>(d_{AR}/2)</td>
<td></td>
</tr>
</tbody>
</table>

(1) Application for tank vessels only.

Note 1:
\(\alpha_1, \alpha_2 \) : Coefficients defined in Tab 3.

Table 3 : Values of coefficients \(\alpha_1 \) and \(\alpha_2 \)

<table>
<thead>
<tr>
<th>Loading conditions</th>
<th>(\alpha_1)</th>
<th>(\alpha_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lightship</td>
<td>1,0</td>
<td>0,5</td>
</tr>
<tr>
<td>Fully loaded vessel</td>
<td>0,1</td>
<td>0</td>
</tr>
</tbody>
</table>
| Transitory conditions
 • hogging | 1,0 | 0 |
 • sagging | 0,1 | 0 |

3.4.5 Hopper barges, split hopper barges, hopper dredgers and split hopper dredgers

The still water bending moments are to be as required in:
- [3.4.2] for hopper barges
- [3.4.3] for hopper dredgers, considering the load case “Working” instead of “Harbour” (see Ch 3, Sec 1, [4]).

3.4.6 Tugs and pushers

This requirement applies to tugs and pushers whose engines are located amidships and whose bunkers are inside the engine room or adjoin it.

The still water bending moments (amidships), in kN.m, are to be determined using the following formulae:

- Still water hogging bending moment:
 \[M_{bh} = 1.96 L^{1.5} B D (1 - 0.9 C_b) \]
- Still water sagging bending moment:
 \[M_{bs} = 0.01 L^2 B T (\varphi_1 + \varphi_2) \]
 where:
 \[\varphi_1 = 5,5 \left(0,6 + C_b - \frac{X}{L} \right) \]
 \[\varphi_2 = 10 \Phi / L^2 B \]
 \(X \) : Length, in m, of the machinery space increased by the length of adjacent bunkers
 \(\Phi \) : Total brake power of the propelling installation, in kW.
Table 4: Estimated still water bending moments of non-propelled cargo carriers

<table>
<thead>
<tr>
<th>Location</th>
<th>Hoggling</th>
<th>Sagging</th>
</tr>
</thead>
<tbody>
<tr>
<td>Navigation</td>
<td>$M_{h0} = 1,515 \ L^2 B^{0.78} D^{0.12} (1 - C_b)$</td>
<td>$M_{s0} = F (M_{h0} + M_{d0}) - M_{h0}$</td>
</tr>
<tr>
<td>Harbours</td>
<td>$M_{h1} = M_{h0} + (M_{h1} - M_{h0})$</td>
<td>$M_{s1} = 0,7 L^{0.08} B^{1.17} T^2 C_b [R_{I1} (0,52 L - 1,84 \ell_j) (1 - R_{11}) + F R_{11} (0,5 L - 1,23 \ell_j)]$</td>
</tr>
</tbody>
</table>

Note 1: $M_{h1} = 1,4 L^{0.08} B^{1.17} T^2 C_b [R_{I1} (0,52 L - 1,84 \ell_j) (1 - R_{11}) + R_{12} (0,5 L - 1,23 \ell_j) (1 - R_{12})]$

Table 5: Estimated still water bending moments of self-propelled cargo carriers

<table>
<thead>
<tr>
<th>Location</th>
<th>Hoggling</th>
<th>Sagging</th>
</tr>
</thead>
<tbody>
<tr>
<td>Navigation</td>
<td>$M_{h0} = 0,273 L^2 B^{1.342} D^{0.172} (1,265 - C_b)$</td>
<td>$M_{s0} = F M_{h0} - M_{h0}$</td>
</tr>
<tr>
<td>Harbours</td>
<td>$M_{h1} = M_{h0} + 0,5 M_i$</td>
<td>$M_{s1} = 0,8 M_{h0} + 0,5 M_i$</td>
</tr>
</tbody>
</table>

Note 1: $M_{h1} = 0,4 L^2 B^{2,113} D^{0.15} (1,198 - C_b)$
$M_{h0} = 0,417 L^{1.92} B^{0.64} (0,712 - 0,622 C_b)$
$M_{h1} = 0,4 L^{1.06} B^{0.17} T^{0.48} (C_b - 0,47) [3,1 + R_{I1} (10,68 L - 53,22 \ell_j) (1 - R_{11}) + R_{12} (0,17 L - 0,15 \ell_j) (1 - R_{12})]$

Table 6: Correction bending moment M_C

<table>
<thead>
<tr>
<th>Item</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Non-propelled cargo carriers</td>
<td>$M_C = [0,0416 k_1 L^2 + (0,125 k_2 + k_3 + 0,125 k_4) L] (P - P_0)$</td>
</tr>
</tbody>
</table>

Concentrated weights or loads
$M_C = P (k_1 d + k_3 L) - P_0 (k_1 d_0 + k_3 L)$
Distributed weights or loads
$M_C = P (k_1 d^2 + k_1 d + k_3) - P_0 (k_1 d_0^2 + k_1 d_0 + k_3 L)$

• Self-propelled cargo carriers

Hull weight (1)
$M_C = (0,125 k_2 + k_3 + 0,125 k_4) (P - P_0) L$
Concentrated weights or loads
$M_C = P (k_2 d + k_3 L) - P_0 (k_2 d_0 + k_3 L)$
Distributed weights or loads
$M_C = P (k_2 d^2 + k_2 d + k_3 L) - P_0 (k_2 d_0^2 + k_2 d_0 + k_3 L)$

(1) Uniform weight distribution.

Note 1:
$M = P [0,33 k_1 (d_1^2 + d_2 d_1 + d_1^2) + 0,5 k_2 d_1 + k_3 L]$
$M_0 = P_0 [0,33 k_1 (d_01^2 + d_02 d_01 + d_01^2) + 0,5 k_2 d_01 + k_3 L]$
k_i: Coefficients defined in Tab 7
P: Actual weight or load, in t
P_0: Standard weight or load, in t, defined in [3.2] or [3.3], as applicable
d: Actual distance from midship as shown in Fig 1, in m, of centre of gravity of concentrated weights or loads ($d \geq 0$):
$\ell = L / 2 - X$ for $X \leq L / 2$
$\ell = X - L / 2$ for $X > L / 2$
d_0: Standard distance from midship, in m, of centre of gravity of concentrated weights or loads ($d_0 \geq 0$)
d_1, d_2: Distances measured from midship, in m, defining the extent of actual distributed weight or load (see Fig 1)
d_01, d_02: Distances measured from midship, in m, defining the extent of standard distributed weight or load.

3.5 Correction bending moment

3.5.1 The correction bending moment applies only to cargo carriers whose still water bending moment is calculated with the formulae derived from [3.4]. The correction bending moment ΣM_C is the sum of each individual correction bending moment M_C of each individual item as defined in Tab 6 and is to be considered for both hogging and sagging conditions.

Where the weight or location of the centre of gravity of a lightship item or cargo item presents a deviation greater than 10% with respect to the standard value defined in [3.1] or [3.2], as applicable, the design bending moment is to be corrected using correction bending moment M_C given in Tab 6.
4 Wave loads

4.1 Vertical wave bending moment

4.1.1 An additional bending moment/wave bending moment taking into account the stream and water conditions in the navigation zone is to be considered, except for range of navigation IN(0).

- For range of navigation IN(0,6), the absolute value of the additional bending moment amidships is to be obtained, in kN.m, from the following formula:
 \[M_{WW} = 0.045 L^2 B C_B \]

- For range of navigation IN(0,6 < x ≤ 2), the absolute value of the vertical wave-induced bending moment amidships is to be obtained, in kN.m, from the following formula:
 \[M_{WW} = 0.021 C L^2 B (C_B + 0.7) \]

4.2 Horizontal wave bending moment

4.2.1 The horizontal wave bending moment at any hull transverse section is obtained, in kN.m, from the following formula.

\[M_{WH} = C_{WH} F_{MT} \frac{n}{L^2} T C_B \]

where

- \(C_{WH} \): Horizontal wave coefficient
 \(C_{WH} = 0.895 \)

- \(F_{MT} \): Distribution factor defined in Tab 8 (see also Fig 2)

4.2.2 As an alternative to the aforementioned formula, the Society may accept the horizontal wave bending moment values from direct calculations, when justified on the basis of the vessel’s characteristics and intended service. The calculations are to be submitted to the Society for approval.

5 Total vertical bending moments

5.1 General

5.1.1 Where estimated values of still water bending moments are used, the total vertical bending moments at any hull girder transverse section are to be determined as specified in Tab 9, where \(F_{MT} \) is the distribution factor defined in Tab 8 (see also Fig 2).

5.1.2 Where values of still water bending moments obtained by direct calculation are used, the total vertical bending moments at any hull girder transverse section are to be determined as specified in Tab 10, where \(F_{MT} \) is the distribution factor defined in Tab 8 (see also Fig 2).

6 Total vertical shear force

6.1 General

6.1.1 The total vertical shear force is to be provided by the designer.

6.2 Rule values

6.2.1 If the value of total vertical shear force is not provided by the designer, it is not to be taken less than that derived from [6.3].

6.3 Estimated total design vertical shear force

6.3.1 The estimated total design vertical shear force, in kN, is to be obtained from the following formula:

\[T_s = \frac{2M}{L} \]

where:

- \(T_s \): Total vertical bending moment, in kN.m, \(M_{WH} \) or \(M_{TH} \) as defined in Tab 9, taking \(F_{MT} = 1 \).
Table 9 : Total vertical bending moments (using estimated values of still water bending moments)

<table>
<thead>
<tr>
<th>Load case</th>
<th>Limit state</th>
<th>Hogging</th>
<th>Sagging</th>
</tr>
</thead>
<tbody>
<tr>
<td>“a”</td>
<td>All limit states</td>
<td>$M_{TH} = F_{SM} (M_{H} + CFV M_{MWV})$</td>
<td>$M_{IS} = F_{SM} (M_{S} + CFV M_{MWV})$</td>
</tr>
<tr>
<td>“b”</td>
<td>Hull girder yielding</td>
<td>$M_{TH} = F_{SM} (M_{H} + CFV M_{MWV})$</td>
<td>$M_{IS} = F_{SM} (M_{S} + CFV M_{MWV})$</td>
</tr>
<tr>
<td></td>
<td>Other limit states</td>
<td>$M_{TH} = F_{SM} (M_{H} + \gamma_w CFV M_{MWV})$</td>
<td>$M_{IS} = F_{SM} (M_{S} + \gamma_w CFV M_{MWV})$</td>
</tr>
<tr>
<td>“c”</td>
<td>Other limit states</td>
<td>$M_{TH} = F_{SM} (M_{H} + \gamma_w CFV M_{MWV})$</td>
<td>$M_{IS} = F_{SM} (M_{S} + \gamma_w CFV M_{MWV})$</td>
</tr>
<tr>
<td>“d”</td>
<td>Other limit states</td>
<td>$M_{TH} = F_{SM} (M_{H} + \gamma_w CFV M_{MWV})$</td>
<td>$M_{IS} = F_{SM} (M_{S} + \gamma_w CFV M_{MWV})$</td>
</tr>
</tbody>
</table>

CFV : Combination factor
- CFV = 0 for load case “a”
- CFV = 1 for load case “b”
- CFV = 0,4 for load case “c” and “d”
- CFV = 0,6 for flooding

Table 10 : Total vertical bending moments (using direct calculation values of still water bending moments)

<table>
<thead>
<tr>
<th>Load case</th>
<th>Limit state</th>
<th>Hogging</th>
<th>Sagging</th>
</tr>
</thead>
<tbody>
<tr>
<td>“a”</td>
<td>All limit states</td>
<td>$M_{TH} = M_{H} + F_{SM} CFV M_{MWV}$</td>
<td>$M_{IS} = M_{S} + F_{SM} CFV M_{MWV}$</td>
</tr>
<tr>
<td>“b”</td>
<td>Hull girder yielding</td>
<td>$M_{TH} = M_{H} + F_{SM} CFV M_{MWV}$</td>
<td>$M_{IS} = M_{S} + F_{SM} CFV M_{MWV}$</td>
</tr>
<tr>
<td></td>
<td>Other limit states</td>
<td>$M_{TH} = M_{H} + \gamma_w F_{SM} CFV M_{MWV}$</td>
<td>$M_{IS} = M_{S} + \gamma_w F_{SM} CFV M_{MWV}$</td>
</tr>
<tr>
<td>“c”</td>
<td>Other limit states</td>
<td>$M_{TH} = M_{H} + \gamma_w F_{SM} CFV M_{MWV}$</td>
<td>$M_{IS} = M_{S} + \gamma_w F_{SM} CFV M_{MWV}$</td>
</tr>
<tr>
<td>“d”</td>
<td>Other limit states</td>
<td>$M_{TH} = M_{H} + \gamma_w F_{SM} CFV M_{MWV}$</td>
<td>$M_{IS} = M_{S} + \gamma_w F_{SM} CFV M_{MWV}$</td>
</tr>
</tbody>
</table>

CFV : Combination factor
- CFV = 0 for load case “a”
- CFV = 1 for load case “b”
- CFV = 0,4 for load case “c” and “d”
- CFV = 0,6 for flooding
SECTION 3 VESSEL MOTIONS AND ACCELERATIONS

Symbols

- \(x, y, z \) : X, Y and Z co-ordinates, in m, of the calculation point with respect to the reference co-ordinate system defined in Ch 1, Sec 2, [3.1]
- \(n \) : Navigation coefficient defined in Ch 3, Sec 1, [5.2]
- \(H_w \) : Wave parameter:
 \[H_w = \frac{n}{17} \left(\frac{L}{L_{ref}} \right)^3 \]
- \(L_{ref} \) : Reference length, in m
 \(L_{ref} = 33,7 \)
- \(a_{SU} \) : Surge acceleration, in m/s², defined in [2.1.1]
- \(a_{SW} \) : Sway acceleration, in m/s², defined in [2.1.2]
- \(a_{H} \) : Heave acceleration, in m/s², defined in [2.1.3]
- \(\alpha_R \) : Roll acceleration, in rad/s², defined in [2.1.4]
- \(\alpha_P \) : Pitch acceleration, in rad/s², defined in [2.1.5]
- \(\alpha_Y \) : Yaw acceleration, in rad/s², defined in [2.1.6]
- \(T_{SW} \) : Sway period, in s, defined in [2.1.2]
- \(T_R \) : Roll period, in s, defined in [2.1.4]
- \(T_P \) : Pitch period, in s, defined in [2.1.5]
- \(A_R \) : Roll amplitude, in rad, defined in [2.1.4]
- \(A_P \) : Pitch amplitude, in rad, defined in [2.1.5]
- \(V \) : Maximum ahead service speed, in km/h
- \(\Delta \) : Vessel’s displacement, in ton.
- \(D \) : Depth, in m, defined in Ch 1, Sec 2, [2.3]

1 General

1.1 General considerations

1.1.1 Vessel motions and accelerations are defined, with their signs, according to the reference co-ordinate system in Ch 1, Sec 2, [3.1].

1.1.2 Vessel motions and accelerations are assumed to be periodic. The motion amplitudes, defined by the formulae in this Section, are half of the crest to trough amplitudes.

1.1.3 As an alternative to the formulae in this Section, the Society may accept the values of vessel motions and accelerations derived from direct calculations or obtained from model tests, when justified on the basis of the vessel’s characteristics and intended service. In general, the values of vessel motions and accelerations to be determined are those which can be reached with a probability level of \(10^{-5} \). In any case, the model tests or the calculations, including the assumed sea scatter diagrams and spectra, are to be submitted to the Society for approval.

1.2 Application

1.2.1 The requirements of this Section apply to vessels of types and characteristics listed hereafter:

- self-propelled cargo carriers with machinery aft with:
 \[0,60 \leq R \leq 0,82 \]
 \[0,79 \leq C_B < 0,95 \]
 \[L \geq 35 \text{ m} \]
- non-propelled cargo carriers with:
 \[0,80 \leq R \leq 0,92 \]
 \[C_B \geq 0,92 \]
 \[L \geq 35 \text{ m} \]
- passenger vessels with machinery aft with:
 \[0,79 \leq C_B < 0,95 \]
 \[L \geq 35 \text{ m} \]
- service vessels with machinery amidships.

1.2.2 The formulae given in this section are not applicable to the following:

- vessels of types other than those covered in [1.2.1]
- vessels of unusual design
- vessels with any non-homogeneous loading conditions other than standard loading conditions described in Ch 3, Sec 1
- vessels greater than 135 m in length.

2 Vessel motions and accelerations

2.1 Vessel absolute motions and accelerations

2.1.1 Surge

The surge acceleration \(a_{SU} \) is obtained, in m/s², from the formula in Tab 3.

2.1.2 Sway

The sway acceleration \(a_{SW} \) is obtained, in m/s², from the formula in Tab 3. The sway period \(T_{SW} \) is obtained from the following formula:

\[T_{SW} = \frac{0,8 \sqrt{L}}{0,1 \frac{V}{\sqrt{L}} + 1} \]

2.1.3 Heave

The heave acceleration \(a_{H} \) is obtained, in m/s², from the formula in Tab 3.
2.1.4 Roll
The roll amplitude A_R, period T_R and acceleration α_R are obtained from the formulae in Tab 1.

Table 1: Roll amplitude, period and acceleration

<table>
<thead>
<tr>
<th>Amplitude A_R in rad</th>
<th>Period T_R in s</th>
<th>Acceleration α_R in rad/s2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A_R = \frac{1}{1.7} \left(\frac{\delta}{\delta} - 0.9 \right) \frac{6.3}{B} \frac{\pi}{T_R}$</td>
<td>$2C_a \frac{\delta}{\sqrt{GM}}$</td>
<td>$A_R \left(\frac{2\pi}{T_R} \right)^2$</td>
</tr>
<tr>
<td>C_a : Added mass coefficient</td>
<td></td>
<td></td>
</tr>
<tr>
<td>δ : Roll radius of gyration, in m, for the loading condition considered, when δ is not known, the following value may be assumed:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>full load: $\delta = 0.35B$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>lightship: $\delta = 0.40B$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GM : Distance, in m, from the vessel’s centre of gravity to the transverse metacentre, for the loading considered; when GM is not known, the following value may be assumed:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GM = $\frac{C_{GM} B^7}{12T_1 C_B} + 5T_1 - KG$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C_{GM} : GM coefficient to be taken equal to:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>full load: $C_{GM} = 0.95$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>lightship: $C_{GM} = 0.82$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KG : Height, in m, of the vessel’s centre of gravity above keel. When KG is unknown, it may be assumed according to Tab 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T_1 : Draught associated with each cargo and ballast distribution, defined in Ch 3, Sec 1, [2.4.3].</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2.1.5 Pitch
The pitch acceleration α_p is obtained, in rad/s2, from the formula Tab 3.

Table 2: Height of the vessel’s centre of gravity above keel KG

<table>
<thead>
<tr>
<th>Vessel type</th>
<th>KG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full load</td>
<td>Lightship</td>
</tr>
<tr>
<td>Tanker</td>
<td>0.64 D</td>
</tr>
<tr>
<td>Container vessel</td>
<td>0.71 D</td>
</tr>
<tr>
<td>Pontoon</td>
<td>1.20 D</td>
</tr>
<tr>
<td>Passenger vessel</td>
<td>1.10 D</td>
</tr>
<tr>
<td>Tug/Pusher</td>
<td>0.73 D</td>
</tr>
<tr>
<td>Others</td>
<td>0.64 D</td>
</tr>
</tbody>
</table>

2.1.6 Yaw
The yaw acceleration α_y is obtained, in rad/s2, from the formula Tab 3.

Table 3: Vessel accelerations

<table>
<thead>
<tr>
<th>X</th>
<th>μ</th>
<th>k</th>
<th>Γ</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a_{h_{\text{FW}}}$</td>
<td>1471</td>
<td>3</td>
<td>$1.90 \left(\frac{1}{B} \right)^{0.35} \left(\frac{1}{T_1} \right)^{1.05}$</td>
</tr>
<tr>
<td>$a_{h_{\text{FW}}}$</td>
<td>911</td>
<td>3</td>
<td>$0.30 \left(\frac{1}{B} \right)^{0.50} \left(\frac{1}{T_1} \right)^{1.15}$</td>
</tr>
<tr>
<td>$a_{h_{\text{FW}}}$</td>
<td>261</td>
<td>3</td>
<td>$1.50 \left(\frac{1}{B} \right)^{0.25} \left(\frac{1}{T_1} \right)^{0.05}$</td>
</tr>
<tr>
<td>$a_{h_{\text{FW}}}$</td>
<td>64</td>
<td>2</td>
<td>$8.50 \left(\frac{1}{B} \right)^{0.15} \left(\frac{1}{T_1} \right)^{0.05}$</td>
</tr>
<tr>
<td>$a_{h_{\text{FW}}}$</td>
<td>368</td>
<td>2</td>
<td>$0.18 \left(\frac{1}{B} \right)^{0.25} \left(\frac{1}{T_1} \right)^{0.05}$</td>
</tr>
</tbody>
</table>

2.2 Vessel relative motions

2.2.1 The reference value of the relative motion in the upright condition h_1, in m, is obtained at any hull transverse section, from the following formula:

$$h_1 = h_{s} - A_{x} \frac{B_w}{2}$$

h_2 : Reference value, in m, of the relative motion in the inclined vessel condition, calculated according to Tab 4

B_w : Moulded breadth, in m, measured at the waterline at draught T_1 at the hull transverse section considered

2.2.2 The reference value of the relative motion in the inclined vessel condition is obtained at any hull transverse section, from the formulae in Tab 4

Table 4: Reference value of the relative motion h_x in the inclined vessel condition

<table>
<thead>
<tr>
<th>Location</th>
<th>Reference value of the relative motion h_x in the inclined vessel condition, in m</th>
</tr>
</thead>
<tbody>
<tr>
<td>$0 \leq x \leq 0.75 L$</td>
<td>$h_{x,FC} + \frac{b_{x,FC} - h_{x,FC} \left(\frac{x}{L} - 0.75 \right)}{0.25}$</td>
</tr>
<tr>
<td>$0.75 L < x < L$</td>
<td>$b_{x,FE} \left(\frac{x}{L} - 0.75 \right)$</td>
</tr>
<tr>
<td>$x = L$</td>
<td>$h_{x,FE}$: Reference value h_x calculated for $x = 0.75 L$</td>
</tr>
<tr>
<td>$b_{x,FE}$: Reference value h_x calculated for $x = L$</td>
<td></td>
</tr>
</tbody>
</table>
2.3 Vessel relative accelerations

2.3.1 Definition
At any point, the accelerations in X, Y and Z direction are the acceleration components which result from the vessel motions defined from [2.1.1] to [2.1.6].

2.3.2 Vessel conditions
Vessel relative motions and accelerations are to be calculated considering the vessel in the following conditions:

- Upright vessel condition
- Inclined vessel condition

in this condition, the vessel encounters waves which produce vessel motions in the X-Z plane, i.e. surge, heave and pitch

- Inclined vessel condition
in this condition, the vessel encounters waves which produce vessel motions in the X-Y and Y-Z planes, i.e. sway, heave, roll and yaw.

2.3.3 Accelerations
The reference values of the longitudinal, transverse and vertical accelerations at any point are obtained from the formulae in Tab 5 for upright and inclined vessel conditions.

Table 5 : Reference value of the accelerations a_x, a_y, and a_z

<table>
<thead>
<tr>
<th>Direction</th>
<th>Upright vessel condition</th>
<th>Inclined vessel condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>X - Longitudinal a_{X1} and a_{X2} in m/s2</td>
<td>$a_{\text{X1}} = \sqrt{a_{\text{W1}}^2 + [9, 81 A_p(z - T_1)]^2}$</td>
<td>$a_{\text{X2}} = 0$</td>
</tr>
<tr>
<td>Y - Transverse a_{Y1} and a_{Y2} in m/s2</td>
<td>$a_{\text{Y1}} = 0$</td>
<td>$a_{\text{Y2}} = \sqrt{a_{\text{W2}}^2 + [9, 81 A_p(z - T_1)]^2 + a_y^2 K_X L^2}$</td>
</tr>
<tr>
<td>Z - Vertical a_{Z1} and a_{Z2} in m/s2</td>
<td>$a_{\text{Z1}} = \sqrt{a_{\text{H1}}^2 + a_y^2 K_X L^2}$</td>
<td>$a_{\text{Z2}} = \sqrt{0, 25 a_{\text{H1}}^2 + a_y^2 Y^2}$</td>
</tr>
</tbody>
</table>

Note 1:
- K_X : Coefficient defined as:
 $K_X = 1, 2 \left(\frac{2}{L} \right)^2 - 1, 1 \frac{Y}{L} + 0, 2 \geq 0, 018$
- T_1 : Draught, in m, defined in Ch 3, Sec 1, [2.4.3].
SECTION 4 LOCAL LOADS

Symbols

\(p \) : Design pressure, in kN/m\(^2\)

\(x, y, z \) : X, Y and Z co-ordinates, in m, of the calculation point with respect to the reference co-ordinate system defined in Ch 1, Sec 2, [3.1]

\(z_i \) : z co-ordinate, in m, of the highest point of the liquid

\(z_i = z_{TOP} + 0.5 (z_{AP} - z_{TOP}) \)

\(z_{TOP} \) : Z co-ordinate, in m, of the highest point of the tank or compartment, see Fig 1

\(z_{AP} \) : Z co-ordinate, in m, of the top of air pipe, see Fig 1

\(z_{AP} = z_{TOP} + d_{AP} \)

\(z_{hi} \) : Z co-ordinate, in m, of the bottom or inner bottom

\(d_{AP} \) : Distance from the top of the air pipe to the top of the tank, in m, see Fig 1

\(p_{pv} \) : Setting pressure, in kN/m\(^2\), of safety valves or maximum pressure, in kN/m\(^2\), in the tank during loading/unloading, whichever is the greater

\(\rho \) : River/sea water density, in t/m\(^3\)

\(\rho_L \) : Density, in t/m\(^3\), of the liquid carried

\(g \) : Gravitational acceleration:

\(g = 9.81 \text{ m/s}^2 \)

\(H \) : Wave height defined in Ch 3, Sec 1, [5.1]

\(n \) : Navigation coefficient defined in Ch 3, Sec 1, [5.2]

\(\gamma_{W2} \) : Partial safety factor covering uncertainties regarding wave loads:

- for \(H = 0.6 \): \(\gamma_{W2} = 1 \)
- for \(H > 0.6 \): \(\gamma_{W2} \) as specified in Ch 5, Sec 1, [1.3]

\(h_1 \) : Reference value of the relative motion defined in Ch 3, Sec 3, [2.2.1]

\(h_2 \) : Reference value of the relative motion defined in Ch 3, Sec 3, [2.2.1]

\(a_{X1}, a_{Y1}, a_{Z1} \) : Reference values of the accelerations in the upright vessel condition, defined in Ch 3, Sec 3, [2.3], calculated in way of the centre of gravity:

- of the compartment, in general
- of any dry unit cargo, in the case of this type of cargo

\(a_{X2}, a_{Y2}, a_{Z2} \) : Reference values of the accelerations in the inclined vessel condition, defined in Ch 3, Sec 3, [2.3], calculated in way of the center of gravity:

- of the compartment, in general
- of any dry unit cargo, in the case of this type of cargo

\(C_{FA} \) : Combination factor, to be taken equal to

- \(C_{FA} = 0.7 \) for load case “c”
- \(C_{FA} = 1.0 \) for load case “d”

\(L_H \) : Length, in m, of the hold, to be taken as the longitudinal distance between the transverse bulkheads which form boundaries of the hold considered

\(m_B \) : Mass of dry bulk cargo, in t, in the hold considered

\(\rho_B \) : Dry bulk cargo density, in t/m\(^3\)

\(\phi_B \) : Dry bulk cargo angle of repose.

1 General

1.1 Application

1.1.1 The requirements of this Section apply for the definition of local loads to be used for the scantling checks of:

- platings
- ordinary stiffeners
- primary supporting members.

1.2 Inertial loads

1.2.1 Ranges of navigation IN(0) and IN(0,6)

For ranges of navigation IN(0) and IN(0,6), inertial local loads induced by vessel relative motions and accelerations are not to be taken into account.

1.2.2 Range of navigation IN(0,6 < x ≤ 2)

For range of navigation IN(0,6 < x ≤ 2), inertial local loads induced by vessel relative motions and accelerations are to be taken into account.
Table 1: Wave pressure on sides and bottom in upright vessel conditions (load case “b”)

<table>
<thead>
<tr>
<th>Location</th>
<th>Wave pressure p_{WE}, in kN/m²</th>
<th>Crest (positive h_1)</th>
<th>Trough (negative h_1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bottom and sides below the waterline ($z \leq T_1$)</td>
<td>$\frac{-2\pi h_1 e^{-\frac{z}{T_1}}}{\rho g}$</td>
<td>$\rho g h_1 e^{-\frac{z}{T_1}}$</td>
<td>without being taken less than $\rho g (z - T_1)$</td>
</tr>
<tr>
<td>Sides above the waterline ($z > T_1$)</td>
<td>$\rho g (T_1 + h_1 - z)$</td>
<td>without being taken less than:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\cdot 2 + 0.3 n^{0.5}$ for $H > 0.6$</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\cdot 2 + 0.25 n$ for $H \leq 0.6$</td>
<td></td>
</tr>
</tbody>
</table>

Note 1: Wave pressure in way of wave trough is to be used only for the calculation of the external counter pressure p_{Em}.

Table 2: Wave pressure on sides, bottom in inclined vessel conditions (load cases “c” and “d”)

<table>
<thead>
<tr>
<th>Location</th>
<th>Wave pressure p_{WE}, in kN/m² (negative roll angle) (1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bottom and sides below the waterline ($z \leq T_1$)</td>
<td>$C_{T2} \rho g B_w e^{-\frac{2\pi (z - T_1)}{T_1}}$</td>
</tr>
<tr>
<td>Sides above the waterline ($z > T_1$)</td>
<td>$\rho g \left[T_1 + C_{T2} \frac{2\pi B_w}{h_2} (h_2 - z)\right]$</td>
</tr>
</tbody>
</table>

(1) In the formulae giving the wave pressure p_{WE}, the ratio (y / B_w) is not to be taken greater than 0.5.

Note 1:

C_{T2} : Combination factor, to be taken equal to:
- $C_{T2} = 1.0$ for load case “c”
- $C_{T2} = 0.5$ for load case “d”
2 External pressure

2.1 Pressure on sides and bottom

2.1.1 External design pressure

The external design pressure p_E at any point of the hull, in kN/m2, is given by the formulae:

- for $z \leq T_1$: \[p_E = p_{SE} + \gamma W_2 p_{WE} \]
- for $z > T_1$: \[p_E = \gamma W_2 p_{WE} \]

where:

- p_{SE}: External still water pressure, in kN/m2, defined in [2.1.3]
- p_{WE}: Wave pressure, in kN/m2, defined in [2.1.4].

2.1.2 External counter pressure

The external counter pressure p_{Em} at any point of the hull, in kN/m2, is given by the formulae:

- for $z \leq T_1$: \[p_{Em} = p_{SE} + \gamma W_2 p_{WE} \]
- for $z > T_1$: \[p_{Em} = \gamma W_2 p_{WE} \]

where:

- p_{SE}: External still water pressure, in kN/m2, defined in [2.1.3]
- p_{WE}: Wave pressure, in kN/m2, defined in [2.1.4].

2.1.3 External still water pressure

The external still water pressure p_{SE} at any point of the hull, in kN/m2, is given by the formula:

\[p_{SE} = \rho g (T_1 - z) \]

2.1.4 Wave pressure

The wave pressure p_{WE} at any point of the hull, in kN/m2, is to be obtained from the formulae given:

- in Tab 1 (see Fig 3) for the upright vessel condition (load case "b")
- in Tab 2 (see Fig 4 and Fig 5) for the inclined vessel condition (load cases "c" and "d").

2.2 Pressure on exposed decks

2.2.1 The pressure p_E on exposed decks is not to be taken less than the values given in Tab 3.
3 Internal loads

3.1 Liquids

3.1.1 General

The pressures transmitted to the hull structure, in kN/m², by liquid cargo / vessel supplies (p_C) or ballast (p_B) are to be taken equal to:

\[p_C = p_S + \gamma W \] for liquid cargo

\[p_B = p_S + \gamma W \] for ballast

with:

- p_S, p_W : Still water pressure and inertial pressure defined in [3.1.2] and [3.1.3], respectively.

3.1.2 Still water pressure

The still water pressure p_S is to be obtained, in kN/m², from the following formulae:

- liquid cargo:
 \[p_S = \rho_L g (z_{\text{LTOP}} - z) \]
 \[p_S = \rho_L g (z_{\text{LTOP}} - z) + 1.15 \text{ppv} \]

- ballast:
 \[p_S = \rho g (z_{\text{TOP}} - z + d_{\text{AP}}) \]

3.1.3 Inertial pressure

The inertial pressure p_W is to be obtained, in kN/m², from the formulae in Tab 4.

In addition, p_W should be taken such that p_S + p_W ≥ 0

3.1.4 Total acceleration vector

The total acceleration vector is the vector obtained from the following formula:

\[\vec{A}_T = \vec{A} + \vec{G} \]

where:

- A : Acceleration vector whose absolute values of X, Y and Z components are the longitudinal, transverse and vertical accelerations defined in Ch 3, Sec 3, [2.3.3]
- G : Gravity acceleration vector.

The Y and Z components of the total acceleration vector and the angle it forms with the z direction are defined in Tab 5.

3.1.5 Highest point of the tank in the direction of the total acceleration vector

The highest point of the tank in the direction of the total acceleration vector A_T, defined in [3.1.4], is the point of the tank boundary whose projection on the direction forming the angle Φ with the vertical direction is located at the greatest distance from the tank’s centre of gravity. It is to be determined for the inclined vessel condition, as indicated in Fig 7, where A and G are the vectors defined in [3.1.4] and C is the tank’s centre of gravity.

\[\Phi = 90° \]

\[A - H \]

Table 4: Watertight bulkheads of liquid compartments - Inertial pressure

<table>
<thead>
<tr>
<th>Vessel condition</th>
<th>Load case</th>
<th>Inertial pressure p<sub>W</sub>, in kN/m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upright</td>
<td>“a”</td>
<td>No inertial pressure</td>
</tr>
<tr>
<td></td>
<td>“b”</td>
<td>p<sub>B</sub>[0, 5a<sub>B</sub>(\ell_b) + a<sub>Z</sub>(z<sub>TOP</sub> - z)]</td>
</tr>
<tr>
<td>Inclined (negative roll angle)</td>
<td>“c”</td>
<td>p<sub>B</sub>[a<sub>TV</sub>(y - y<sub>H</sub>) + a<sub>TV</sub>(z - z<sub>H</sub>) + g(z - z<sub>TOP</sub>)]</td>
</tr>
<tr>
<td></td>
<td>“d”</td>
<td>a<sub>TV</sub>, a<sub>R</sub>, y<sub>H</sub>, z<sub>H</sub> : Y and Z co-ordinates, in m, of the highest point of the tank in the direction of the total acceleration vector, defined in [3.1.3] for load case “c” and load case “d”</td>
</tr>
</tbody>
</table>

Note 1:

- \(\ell_b \) : Longitudinal distance, in m, between the transverse tank boundaries, without taking into account small recesses in the lower part of the tank (see Fig 6)
- a_{TV}, a_R : Y and Z components, in m/s², of the total acceleration vector defined in [3.1.4] for load case “c” and load case “d”
- y_H, z_H : Y and Z co-ordinates, in m, of the highest point of the tank in the direction of the total acceleration vector, defined in [3.1.5] for load case “c” and load case “d”.

Figure 6: Distance \(\ell_b \)

Figure 7: Inclined vessel conditions

Highest point H of the tank in the direction of the total acceleration vector
3.2 Dry bulk cargoes

3.2.1 Pressure on side (or inner side) and bulkhead structures

The pressure p_c, in kN/m2 transmitted to side (or inner side) and bulkhead structures is to be obtained using the formula:

$$ p_c = \left(\frac{D - z}{D - z_{ref}} \right) p_0 $$

where:

- p_0 : Mean total pressure on bottom or inner bottom, in kN/m2:
 $$ p_0 = p_s + \gamma_{w2} \rho W \geq 0 $$

- p_s : Mean still water pressure on bottom or inner bottom, in kN/m2:
 $$ p_s = g \frac{m_s}{L_B B_1} $$

- p_W : Mean inertial pressure on bottom or inner bottom is obtained, in kN/m2, as specified in Tab 6.

Table 6: Dry bulk cargoes
Inertial pressure for side and inner side

<table>
<thead>
<tr>
<th>Vessel condition</th>
<th>Load case</th>
<th>Inertial pressure p_W, in kN/m2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upright</td>
<td>“a”</td>
<td>No inertial pressure</td>
</tr>
<tr>
<td></td>
<td>“b”</td>
<td>$p_W = a_{z1} \rho_B \tan \phi_B \frac{m_s}{L_B}$</td>
</tr>
<tr>
<td>Inclined</td>
<td>“c”</td>
<td>The inertial pressure transmitted to the hull structures in inclined condition may generally be disregarded. Specific cases in which this simplification is not deemed permissible by the Society are considered individually.</td>
</tr>
<tr>
<td></td>
<td>“d”</td>
<td></td>
</tr>
</tbody>
</table>

Note 1:

B_1 : Breadth, in m, of the hold

3.2.2 Bottom or inner bottom design pressure

The bottom or inner bottom design pressure $p_{c,b}$, in kN/m2, is to be taken equal to:

$$ p_{c,b} = p_s + \gamma_{w2} \rho W $$

with:

ρ_s, ρ_W : Pressures defined in [3.2.3] and [3.2.4].

In addition, p_s is not to be taken less than the mean total pressure on bottom or inner bottom p_0 obtained from [3.2.1].

3.2.3 Bottom or inner bottom still water design pressure

The bottom or inner bottom still water design pressure p_s is obtained, in kN/m2, from the following formula:

$$ p_s = g \frac{\rho_B \tan \phi_B \frac{m_s}{L_B}} {1 + \frac{m_s}{L_B}} $$

3.2.4 Bottom or inner bottom inertial design pressure

The bottom or inner bottom inertial design pressure p_W is obtained, in kN/m2, as specified in Tab 7:

Table 7: Dry bulk cargoes
Inertial pressure for bottom and inner bottom

<table>
<thead>
<tr>
<th>Vessel condition</th>
<th>Load case</th>
<th>Inertial pressure p_W, in kN/m2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upright</td>
<td>“a”</td>
<td>No inertial pressure</td>
</tr>
<tr>
<td></td>
<td>“b”</td>
<td>$p_W = a_{z1} \rho_B \tan \phi_B \frac{m_s}{L_B}$</td>
</tr>
<tr>
<td>Inclined</td>
<td>“c”</td>
<td>The inertial pressure transmitted to the hull structures in inclined condition may generally be disregarded. Specific cases in which this simplification is not deemed permissible by the Society are considered individually.</td>
</tr>
<tr>
<td></td>
<td>“d”</td>
<td></td>
</tr>
</tbody>
</table>

3.3 Dry uniform cargoes

3.3.1 Design pressure

The design pressure p_c, in kN/m2, is given by the formula:

$$ p_c = p_0 $$

where:

- p_0 : Total design pressure, in kN/m2:
 $$ p_0 = p_s + \gamma_{w2} \rho W $$

- p_s : Still water pressure, in kN/m2, to be defined by the designer

- p_W : Inertial pressure, in kN/m2, as specified in Tab 8:

Table 8: Dry uniform cargoes - Inertial pressure

<table>
<thead>
<tr>
<th>Vessel condition</th>
<th>Load case</th>
<th>Inertial pressure p_W, in kN/m2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upright</td>
<td>“a”</td>
<td>No inertial pressure</td>
</tr>
<tr>
<td></td>
<td>“b”</td>
<td>$p_W = p_{z1} \rho_B \tan \phi_B \frac{m_s}{L_B}$ in z direction</td>
</tr>
<tr>
<td>Inclined (positive heave motion)</td>
<td>“c”</td>
<td>$p_{W,Y} = \rho_B \frac{g z_1}{8}$ in y direction</td>
</tr>
<tr>
<td></td>
<td>“d”</td>
<td>$p_{W,Z} = \rho_B \frac{g z_1}{8}$ in z direction</td>
</tr>
</tbody>
</table>

Inclined (negative roll angle)

<table>
<thead>
<tr>
<th>Vessel condition</th>
<th>Load case</th>
<th>Inertial pressure p_W, in kN/m2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upright</td>
<td>“a”</td>
<td>No inertial pressure</td>
</tr>
<tr>
<td></td>
<td>“b”</td>
<td>$p_W = p_{z1} \rho_B \tan \phi_B \frac{m_s}{L_B}$ in z direction</td>
</tr>
<tr>
<td>Inclined (positive heave motion)</td>
<td>“c”</td>
<td>$p_{W,Y} = \rho_B \frac{g z_1}{8}$ in y direction</td>
</tr>
<tr>
<td></td>
<td>“d”</td>
<td>$p_{W,Z} = \rho_B \frac{g z_1}{8}$ in z direction</td>
</tr>
</tbody>
</table>
3.4 Dry unit cargoes

3.4.1 The force F_x, in kN, transmitted to the hull structure is to be taken equal to:

$F_x = F_S + \gamma W_2 F_W$

with:

F_S, F_W : Forces defined in [3.4.2] and [3.4.3].

Account is to be taken of the elastic characteristics of the lashing arrangement and/or the structure which contains the cargo.

3.4.2 Still water force

The still water force F_S transmitted to the hull structure is to be determined on the basis of the force obtained, in kN, from the following formula:

$F_S = g m_C$

where m_C is the mass, in t, of the dry unit cargo.

3.4.3 Inertial forces

The inertial forces F_W are to be obtained, in kN, from Tab 9.

3.5 Wheeled cargoes

3.5.1 Tyred vehicles

The forces transmitted through the tyres are considered as pressure uniformly distributed on the tyre print, whose dimensions are to be indicated by the designer together with information concerning the arrangement of wheels on axles, the load per axle and the tyre pressures.

With the exception of dimensioning of plating, such forces may be considered as concentrated in the tyre print centre.

3.5.2 Non-tyred vehicles

The requirements of [3.5.4] also apply to tracked vehicles; in this case the print to be considered is that below each wheel or wheelwork.

For vehicles on rails, all the forces transmitted are to be considered as concentrated at the contact area centre.

3.5.3 The force F_x, in kN, transmitted to the hull structure is to be taken equal to:

$F_x = F_S + \gamma W_2 F_W$

with:

F_S, F_W : Forces defined in [3.5.4] and [3.5.5].

3.5.4 Still water force

The still water force F_S transmitted to the hull structure by one wheel is to be determined on the basis of the force obtained, in kN, from the formula:

$F_S = g m_C$

where:

$m_C = Q_A / n_w$

Q_A : Axle load, in t. For fork-lift trucks, the value of Q_A is to be taken equal to the total mass of the vehicle, including that of the cargo handled, applied to one axle only

n_w : Number of wheels for the axle considered.

3.5.5 Inertial forces

The inertial forces F_W are to be obtained, in kN, from Tab 10.

3.6 Accommodation

3.6.1 The pressure transmitted to the hull structure is to be taken equal to:

$p = p_S + \gamma W_2 p_W$

with:

p_S, p_W : Pressures defined in [3.6.2] and [3.6.3], respectively.

3.6.2 Still water pressure

The still water pressure p_S, in kN/m², transmitted to the deck structure is to be defined by the designer and, in general, is not to be taken less than values given in Tab 11.

3.6.3 Inertial pressure

The inertial pressure p_W is to be obtained, in kN/m², from Tab 12:
4 Flooding pressure

4.1 Still water pressure

4.1.1 The still water pressure p_{FL} to be considered as acting on platings and stiffeners of watertight bulkheads of compartments not intended to carry liquids is obtained, in kN/m^2, from the following formula:

$$p_{FL} = \rho g d_F$$

where:

- d_F : Distance, in m, from the calculation point to the deepest waterline to be provided by the Designer.
- Where the location of the deepest waterline is not known, will be taken as:

 $$d_F = D - z$$

5 Testing pressures

5.1 Still water pressures

5.1.1 The still water pressures p_{ST} to be considered as acting on plates and stiffeners subject to tank testing are specified in Tab 13.

Table 12: Accommodation - Inertial pressure

<table>
<thead>
<tr>
<th>Vessel condition</th>
<th>Load case</th>
<th>Inertial pressure p_{W}, in kN/m^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upright (positive heave motion)</td>
<td>“a”</td>
<td>No inertial pressure</td>
</tr>
<tr>
<td></td>
<td>“b”</td>
<td>$p_{W} = \frac{\rho g d_F}{g}$</td>
</tr>
<tr>
<td>Inclined</td>
<td>“c”</td>
<td>The inertial pressure transmitted to the deck structures in inclined condition may generally be disregarded. Specific cases in which this simplification is not deemed permissible by the Society are considered individually.</td>
</tr>
<tr>
<td></td>
<td>“d”</td>
<td></td>
</tr>
</tbody>
</table>

Table 13: Testing - Still water pressure p_{ST}

<table>
<thead>
<tr>
<th>Compartment or structure to be tested</th>
<th>Still water pressure p_{ST}, in kN/m^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Double bottom tanks</td>
<td>$p_{ST} = g \left[(z_{TOP} - z) + d_{AP} \right]$</td>
</tr>
<tr>
<td>Double side tanks</td>
<td>$p_{ST} = g \left[(z_{TOP} - z) + 1 \right]$</td>
</tr>
<tr>
<td>Fore peaks used as tank</td>
<td>whichever is the greater</td>
</tr>
<tr>
<td>After peaks used as tank</td>
<td></td>
</tr>
<tr>
<td>Cargo tank bulkheads</td>
<td>$p_{ST} = g \left[(z_{TOP} - z) + d_{AP} \right]$</td>
</tr>
<tr>
<td>Deep tanks</td>
<td>$p_{ST} = g \left[(z_{TOP} - z) + 1 \right]$</td>
</tr>
<tr>
<td>Independent cargo tanks</td>
<td>$p_{ST} = g \left[(z_{TOP} - z) + 1,3 p_{W} \right]$</td>
</tr>
<tr>
<td>Fuel oil tanks</td>
<td>whichever is the greater</td>
</tr>
<tr>
<td>Ballast compartments</td>
<td>$p_{ST} = g \left[(z_{TOP} - z) + d_{AP} \right]$</td>
</tr>
<tr>
<td>Cofferdams</td>
<td>$p_{ST} = g \left[(z_{TOP} - z) + 1 \right]$</td>
</tr>
<tr>
<td></td>
<td>whichever is the greater</td>
</tr>
<tr>
<td>Double bottom</td>
<td>$p_{ST} = g \left(z_{AP} - z \right)$</td>
</tr>
<tr>
<td>Fore peaks not used as tank</td>
<td>$p_{ST} = g \left[(z_{TOP} - z) + d_{AP} \right]$</td>
</tr>
<tr>
<td>After peaks not used as tank</td>
<td>$p_{ST} = g \left[(z_{TOP} - z) + 1 \right]$</td>
</tr>
<tr>
<td>Other independent tanks</td>
<td>whichever is the greater</td>
</tr>
</tbody>
</table>
Hull Design and Construction

Chapter 4

HULL GIRDER STRENGTH

SECTION 1 STRENGTH CHARACTERISTICS OF THE HULL GIRDER TRANSVERSE SECTIONS

SECTION 2 YIELDING CHECK
SECTION 1

STRENGTH CHARACTERISTICS OF THE HULL GIRDER TRANSVERSE SECTIONS

Symbols

\[Z : \] Hull girder section modulus, in cm\(^3\).

1 General

1.1 Application

1.1.1 This Section specifies the criteria for calculating the hull girder strength characteristics to be used for the checks, in association with the hull girder loads.

2 Characteristics of the hull girder transverse sections

2.1 Hull girder transverse sections

2.1.1 General

The hull girder transverse sections are to be considered as being constituted by the members contributing to the hull girder longitudinal strength, i.e. all continuous longitudinal members below the strength deck defined in [3.1], taking into account the requirements of [2.1.2] to [2.1.5].

2.1.2 Longitudinal bulkheads with vertical corrugations

Longitudinal bulkheads with vertical corrugations may not be included in the hull girder transverse sections.

2.1.3 Members in materials other than steel

Where a member is made in material other than steel, its contribution to the longitudinal strength will be determined by the Society on case by case basis.

2.1.4 Large openings and scallops

Large openings are:
- in the side shell plating: openings having a diameter greater than or equal to 300 mm
- in the strength deck: openings having a diameter greater than or equal to 350 mm.

Large openings and scallops, where scallop welding is applied, are always to be deducted from the sectional areas included in the hull girder transverse sections.

2.1.5 Lightening holes, draining holes and single scallops

Lightening holes, draining holes and single scallops in longitudinals or girders need not be deducted if their height is less than 0.25 \(h_w \), without being greater than 75 mm, where \(h_w \) is the web height, in mm.

Otherwise, the excess is to be deducted from the sectional area or compensated.

2.2 Hull girder section modulus

2.2.1 The section modulus at any point of a hull transverse section is obtained, in cm\(^3\), from the following formula:

\[
Z = \frac{I_y}{100(N - N)}
\]

where:
- \(I_y \): Moment of inertia, in cm\(^4\), of the hull girder transverse section defined in [2.1], about its horizontal neutral axis
- \(N \): Z co-ordinate, in m, of the centre of gravity of the hull transverse section
- \(z \): Z co-ordinate, in m, of the calculation point of a structural element.

2.2.2 The section moduli at bottom and at deck are obtained, in m\(^3\), from the following formulae:
- at bottom:
 \[
 Z \leq \frac{I_y}{N}
 \]
- at deck:
 \[
 Z = \frac{I_y}{V_D}
 \]

where:
- \(I_y, N \): Defined in [2.2.1]
- \(V_D \): Vertical distance, in m:
 - in general:
 \[
 V_D = z_D - N
 \]
 - if continuous trunks or hatch coamings are taken into account in the calculation of \(I_y \):
 \[
 V_D = (z_D - N) \left(0.9 + 0.2 \frac{V_T}{B} \right) \geq z_D - N
 \]
 - if longitudinal ordinary stiffeners or girders welded above the strength deck are taken into account in the calculation of \(I_y \), \(V_D \) is to be obtained from the formula given above for continuous trunks and hatch coamings. In this case, \(y_1 \) and \(z_1 \) are the Y and Z co-ordinates, in m, of the top of the longitudinal stiffeners or girders with respect to the reference co-ordinate system defined in Ch 1, Sec 2, [3].

\[
V_D = z_D - N
\]

\[
Z_D : Z \text{ co-coordinate, in m, of strength deck with respect to the reference co-ordinate system defined in Ch 1, Sec 2, [3]}
\]
The efficiency \(v_i \) of a superstructure/deckhouse \(i \), rigidly constrained to act with the main hull girder, may be determined using the formula:

\[
v_i = v_{i-1} (0.37 \chi - 0.034 \chi^2)
\]

where:

- \(v_{i-1} \): Bending efficiency of superstructure/deckhouse located below considered erection
- \(\chi \): Dimensionless coefficient defined as:
 \[\chi = 100 \ j \ \lambda \leq 5 \]
- \(\lambda \): Erection half length, in m
- \(j \): Parameter, in cm\(^{-1}\), defined as:
 \[j = \frac{1}{A_{SHi}} + \frac{1}{A_{SHi}} - \frac{\Omega}{2,6} \]

- \(A_{SHi}, A_{SHe} \): Independent vertical shear areas, in cm\(^2\), of hull and erection, respectively
- \(\Omega \): Parameter, in cm\(^{-4}\), defined as:
 \[
 \Omega = \frac{(A_i + A_e)(l_1 + l_e) + A_i A_e (e_1 + e_e)^2}{A_i + A_e}
 \]

- \(A_i, A_e \): Independent sectional areas, in cm\(^2\), of hull and erection, respectively, determined in compliance with [2]
- \(I_1, I_e \): Independent section moments of inertia, in cm\(^4\), of hull and erection, respectively, determined in compliance with [2], about their respective neutral axes
- \(e_1, e_e \): Vertical distances, in cm, from the main (upper) deck down to the neutral axis of the hull and up to the neutral axis of the erection respectively (see Fig 1).

An erection with large side entrances is to be split into sub-erections. The formulas given hereabove are, therefore, to be applied to each individual sub-erection.

If the erection material differs from that of the hull, the geometric area \(A_e \) and the moment of inertia \(I_e \) must be reduced according to the ratio \(E_e / E_1 \) of the respective material Young moduli.

Figure 1: Parameters determining the superstructure efficiency
SECTION 2 YIELDING CHECK

Symbols

\(Z \) : Net hull girder section modulus, in cm³

\(M_{TH} \) : Total vertical bending moment in hogging condition, in kN.m, to be determined according to Ch 3, Sec 2, [5]

\(M_{TS} \) : Total vertical bending moment in sagging condition, in kN.m, to be determined according to Ch 3, Sec 2, [5]

\(k \) : Material factor defined in Ch 2, Sec 3, [2.4], and Ch 2, Sec 3, [3.4].

1 Hull girder normal stresses

1.1 Stress calculation

1.1.1 The hull girder normal stresses induced by vertical bending moments are obtained, in N/mm², from the following formulae:

- in hogging conditions:
 \[\sigma_1 = \frac{M_{TH}}{Z} \times 10^3 \]

- in sagging conditions:
 \[\sigma_1 = \frac{M_{TS}}{Z} \times 10^3 \]

1.2 Checking criterion

1.2.1 It is to be checked that the normal hull girder stresses, in N/mm², at any point of the net hull girder transverse section, calculated according to [1.1.1] are in compliance with the following condition:

\[\sigma_1 \leq 192 / k \]
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>General</td>
</tr>
<tr>
<td>2</td>
<td>Bottom Scantlings</td>
</tr>
<tr>
<td>3</td>
<td>Side Scantlings</td>
</tr>
<tr>
<td>4</td>
<td>Deck Scantlings</td>
</tr>
<tr>
<td>5</td>
<td>Bulkhead Scantlings</td>
</tr>
<tr>
<td>6</td>
<td>Vessels with Length L < 40 m</td>
</tr>
<tr>
<td>Appendix 1</td>
<td>Analyses Based on Three Dimensional Models</td>
</tr>
<tr>
<td>Appendix 2</td>
<td>Analyses of Primary Supporting Members Subjected to Wheeled Loads</td>
</tr>
<tr>
<td>Appendix 3</td>
<td>Torsion of Catamarans</td>
</tr>
</tbody>
</table>
SECTION 1 GENERAL

Symbols

- t: Net thickness, in mm, of plating
- w: Net section modulus, in cm3, of ordinary stiffeners
- A_{sh}: Net shear sectional area, in cm2
- k: Material factor defined in Ch 2, Sec 3, [2.4] and Ch 2, Sec 3, [3.4]
- s: Spacing, in m, of ordinary stiffeners
- S: Spacing, in m, of primary supporting members
- ℓ: Span, in m, of ordinary stiffeners or primary supporting members, defined in Ch 2, Sec 4, [3.2] or Ch 2, Sec 4, [4.2]
- B_1: Breadth, in m, of the hold or tank:
 - $B_1 = B - 2B_2$: if no longitudinal bulkhead is fitted
 - $B_1 = (B - 2B_2)/2$: if a longitudinal bulkhead is fitted
- B_2: Breadth, in m, of the side tank
- η: Coefficient taken equal to:
 $$\eta = 1 - \frac{s}{2\ell}$$
- z: Z co-ordinate, in m, of the calculation point
- p_{ST}: Testing pressure, in kN/m2, defined in Ch 3, Sec 4, [5.1.1]
- R_y: Minimum yield stress, in N/mm2, of the material, to be taken equal to 235/k N/mm2, unless otherwise specified
- γ_k: Partial safety factor covering uncertainties regarding resistance, defined in [1.3]
- γ_m: Partial safety factor covering uncertainties regarding material, defined in [1.3]
- C_a: Aspect ratio:
 $$C_a = 1, \frac{21}{\eta} \sqrt{1 + 0, 33\left(\frac{s}{\ell}\right)^2} - 0, 69\frac{s}{\ell} \leq 1$$
- C_r: Coefficient of curvature:
 $$C_r = 1 - 0, 5\frac{s}{\ell} \geq 0, 5$$
 where:
 - r: Radius of curvature, in m.

1 General

1.1 Application

1.1.1 This Chapter contains the requirements for the arrangement and the determination of the hull scantlings applicable to the central part (see Ch 1, Sec 1, [2.1.3]) of all types of vessels covered by these Rules. For the structures of other parts, see Part B, Chapter 6.

These requirements are to be integrated with those specified under applicable Chapters of Part D, depending on the vessel notations.

The scantling determination is to be carried out independently for all applicable load cases according to Ch 3, Sec 1, [4].

1.2 Net scantlings

1.2.1 All scantlings referred to in this Chapter are net, i.e. they do not include any margin for corrosion.

The gross scantlings are obtained as specified in Ch 2, Sec 5, [2].

1.3 Partial safety factors

1.3.1 Plating

The partial safety factors covering uncertainties regarding wave hull girder loads (γ_{W1}), wave local loads (γ_{W2}), material (γ_m) and resistance (γ_k) to be considered for the checking of the plating are specified in Tab 1.

1.3.2 Ordinary stiffeners

The partial safety factors covering uncertainties regarding wave hull girder loads (γ_{W1}), wave local loads (γ_{W2}), material (γ_m) and resistance (γ_k) to be considered for checking ordinary stiffeners are specified in Tab 2.

1.3.3 Primary supporting members

The partial safety factors covering uncertainties regarding wave hull girder loads (γ_{W1}), wave local loads (γ_{W2}), material (γ_m) and resistance (γ_k) to be considered for checking primary structural members are specified:

- Tab 3 for analyses based on isolated beam models
- Tab 4 for analyses based on three dimensional models.
Table 1 : Plating - Partial safety factors

<table>
<thead>
<tr>
<th>Limit state</th>
<th>Condition</th>
<th>γ_{W1}</th>
<th>γ_{W2}</th>
<th>γ_R</th>
<th>γ_m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strength check of plating subjected to lateral pressure</td>
<td>General</td>
<td>1,15</td>
<td>1,20</td>
<td>1,20</td>
<td>1,02</td>
</tr>
<tr>
<td></td>
<td>Flooding (1)</td>
<td>1,15</td>
<td>1,20</td>
<td>1,05 (2)</td>
<td>1,02</td>
</tr>
<tr>
<td></td>
<td>Testing</td>
<td>NA</td>
<td>NA</td>
<td>1,05</td>
<td>1,02</td>
</tr>
<tr>
<td>Buckling check</td>
<td></td>
<td>1,15</td>
<td>NA</td>
<td>1,10</td>
<td>1,02</td>
</tr>
</tbody>
</table>

(1) Applies only to plating to be checked in flooding conditions
(2) For plating of the collision bulkhead, γ_R = 1,25.
Note 1: NA = not applicable.

Table 2 : Ordinary stiffeners - Partial safety factors

<table>
<thead>
<tr>
<th>Limit state</th>
<th>Condition</th>
<th>γ_{W1}</th>
<th>γ_{W2}</th>
<th>γ_R</th>
<th>γ_m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yielding check</td>
<td>General</td>
<td>1,15</td>
<td>1,20</td>
<td>1,02</td>
<td>1,02</td>
</tr>
<tr>
<td></td>
<td>Flooding (1)</td>
<td>1,15</td>
<td>1,20</td>
<td>1,02 (2)</td>
<td>1,02</td>
</tr>
<tr>
<td></td>
<td>Testing</td>
<td>NA</td>
<td>NA</td>
<td>1,02</td>
<td>1,02</td>
</tr>
<tr>
<td>Buckling check</td>
<td></td>
<td>1,15</td>
<td>1,20</td>
<td>1,10</td>
<td>1,02</td>
</tr>
</tbody>
</table>

(1) Applies only to ordinary stiffeners to be checked in flooding conditions
(2) For ordinary stiffeners of the collision bulkhead, γ_R = 1,25.
Note 1: NA = not applicable.

Table 3 : Primary supporting members analysed through isolated beam models - Partial safety factors

<table>
<thead>
<tr>
<th>Limit state</th>
<th>Condition</th>
<th>γ_{W1}</th>
<th>γ_{W2}</th>
<th>γ_R</th>
<th>γ_m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yielding check</td>
<td>General</td>
<td>1,15</td>
<td>1,20</td>
<td>1,02</td>
<td>1,02</td>
</tr>
<tr>
<td></td>
<td>Bottom and side girders</td>
<td>1,15</td>
<td>1,20</td>
<td>1,15</td>
<td>1,02</td>
</tr>
<tr>
<td></td>
<td>Flooding (1)</td>
<td>1,15</td>
<td>1,20</td>
<td>1,02 (2)</td>
<td>1,02</td>
</tr>
<tr>
<td></td>
<td>Testing</td>
<td>NA</td>
<td>NA</td>
<td>1,02</td>
<td>1,02</td>
</tr>
<tr>
<td>Buckling check</td>
<td>Plate panels</td>
<td>1,15</td>
<td>1,20</td>
<td>1,10</td>
<td>1,02</td>
</tr>
<tr>
<td></td>
<td>Pillars column buckling</td>
<td>1,15</td>
<td>1,20</td>
<td>1,15</td>
<td>1,02</td>
</tr>
<tr>
<td></td>
<td>Pillars local buckling</td>
<td>1,15</td>
<td>1,20</td>
<td>1,05</td>
<td>1,02</td>
</tr>
</tbody>
</table>

(1) Applies only to primary supporting members to be checked in flooding conditions
(2) For primary supporting members of the collision bulkhead, γ_R = 1,25.
Note 1: NA = not applicable.

Table 4 : Primary supporting members analysed through three dimensional models - Partial safety factors

<table>
<thead>
<tr>
<th>Limit state</th>
<th>Condition</th>
<th>γ_{W1}</th>
<th>γ_{W2}</th>
<th>γ_R</th>
<th>γ_m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yielding check</td>
<td>General</td>
<td>1,05</td>
<td>1,10</td>
<td>See Tab 5</td>
<td>1,02</td>
</tr>
<tr>
<td></td>
<td>Flooding (1)</td>
<td>1,05</td>
<td>1,10</td>
<td>1,02</td>
<td>1,02</td>
</tr>
<tr>
<td></td>
<td>Testing</td>
<td>NA</td>
<td>NA</td>
<td>1,02</td>
<td>1,02</td>
</tr>
<tr>
<td>Buckling check</td>
<td>Plane plate panels</td>
<td>1,05</td>
<td>1,10</td>
<td>1,02</td>
<td>1,02</td>
</tr>
<tr>
<td></td>
<td>Corrugated plate panels</td>
<td>1,05</td>
<td>1,10</td>
<td>1,02</td>
<td>1,02</td>
</tr>
<tr>
<td></td>
<td>Pillars: column buckling</td>
<td>1,05</td>
<td>1,10</td>
<td>1,15</td>
<td>1,02</td>
</tr>
<tr>
<td></td>
<td>Pillars: local buckling</td>
<td>1,05</td>
<td>1,10</td>
<td>1,05</td>
<td>1,02</td>
</tr>
</tbody>
</table>

(1) Applies only to primary supporting members to be checked in flooding conditions.
Table 5: Primary supporting members analysed through three dimensional model

<table>
<thead>
<tr>
<th>Calculation model</th>
<th>Yielding check</th>
<th>Flooding condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beam</td>
<td>1,20</td>
<td>1,02</td>
</tr>
<tr>
<td>Coarse mesh finite element</td>
<td>1,20</td>
<td>1,02</td>
</tr>
<tr>
<td>Fine mesh finite element</td>
<td>1,05</td>
<td>1,02</td>
</tr>
</tbody>
</table>

1.4 Summary table

1.4.1 The Sections of this Chapter are to be applied to the scantlings and arrangements of the vessel central part according to Tab 6.

<table>
<thead>
<tr>
<th>Main subject</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bottom scantlings</td>
<td>Ch 5, Sec 2</td>
</tr>
<tr>
<td>Side scantlings</td>
<td>Ch 5, Sec 3</td>
</tr>
<tr>
<td>Deck scantlings</td>
<td>Ch 5, Sec 4</td>
</tr>
<tr>
<td>Bulkhead scantlings</td>
<td>Ch 5, Sec 5</td>
</tr>
<tr>
<td>Vessels less than 40 m in length</td>
<td>Ch 5, Sec 6</td>
</tr>
</tbody>
</table>

2 Hull arrangements

2.1 Arrangements for hull openings

2.1.1 Arrangements for hull openings are to be in compliance with Ch 6, Sec 7.

2.2 River chests

2.2.1 Shell plating

The shell plate gross thickness, in mm, in way of river chests as well as the gross thickness of all boundary walls of the river chests are not to be less than:

\[
t = 17,2s \frac{\bar{p}B1}{Ry} + 1,5
\]

where:

- \(p \): Pressure at the safety relief valve, in kN/m²:
 - in general: \(p \geq 200 \) kN/m²
 - for river chests without any compressed air connection and which are accessible at any time: \(p \geq 100 \) kN/m².

2.2.2 Stiffeners

The gross section modulus, in cm³, of river chest stiffeners is not to be less than:

\[
w = \frac{\bar{p}B1}{8Ry} \times 10^3
\]

where:

- \(p \): Design pressure, in kN/m², defined in [2.2.1].

2.3 Pipe connections at the shell plating

2.3.1 Scupper pipes and valves are to be connected to the shell by weld flanges. Instead of weld flanges short-flanged sockets with an adequate thickness may be used if they are welded to the shell in an appropriate manner.

3 Strength check in testing conditions

3.1 General

3.1.1 The requirements of this Article provide the minimum scantlings of platings and structural members of compartments subjected to testing conditions.

Where the test conditions are subject to induce additional loads, the strength check is to be carried out by direct calculation.

3.2 Lateral pressure in testing conditions

3.2.1 The lateral pressure (\(p_{ST} \)) in testing conditions is taken equal to:

- \(p_{ST} - p_S \) for bottom and side structures, if the testing is carried out afloat
- \(p_{ST} \) otherwise,

where \(p_S \) is the still water river pressure defined in Ch 3, Sec 4, [2.1] for the draught \(T_1 \) at which the testing is carried out.

If the draught \(T_1 \) is not defined by the Designer, it may be taken equal to 0,15 \(T \).

3.3 Plating

3.3.1 The net thickness, in mm, of plating of compartments or structures subjected to testing conditions is not to be less than:

\[
t = 14, 9C_C_s \frac{\bar{p}B1}{Ry} - 1,5
\]

3.4 Structural members

3.4.1 The net section modulus \(w \), in cm³, and the net shear sectional area \(A_{sh} \), in cm², of structural members of compartments or structures subjected to testing conditions are not to be less than the values obtained from the formulae given in Tab 7, taking into account the following for double bottom floors and transverses:

- in way of side plate web frames or where the inner side plating extends down to the bottom plating:
 \[
 \ell = B_1
 \]
 \[
 B_1 = 0
 \]
- elsewhere:
 - if no longitudinal bulkhead is fitted:
 \[
 \ell = B_1 \quad \text{and} \quad B_3 = B_2
 \]
 - if a longitudinal bulkhead is fitted:
 \[
 \ell = 0,5 B_1 \quad \text{and} \quad B_3 = 0,5 B_2
 \]
4 Parameters for calculation of thickness t_3

4.1 Ratios

4.1.1 Aspect ratio

The aspect ratio α of elementary plate panel is to be taken equal to:

$$\alpha = a / b$$

where:

- a : Length, in m, of not loaded side of the plate panel
- b : Length, in m, of loaded side of the plate panel.

4.1.2 Edge stress ratio

The edge stress ratio ψ is to be taken equal to:

$$\psi = \sigma_2 / \sigma_1$$

where:

- σ_1 : Maximum compressive stress
- σ_2 : Minimum compressive stress or tensile stress.

4.2 Correction factor for boundary conditions

4.2.1 The correction factor, F_1, for boundary conditions is to be taken equal to:

- $F_1 = 1.00$ for $\alpha \geq 1$
- $F_1 = 1.05$ for $\alpha < 1$ and loaded side stiffened by flat bar
- $F_1 = 1.10$ for $\alpha < 1$ and loaded side stiffened by bulb section
- $F_1 = 1.21$ for $\alpha < 1$ and loaded side stiffened by angle or T-section
- $F_1 = 1.30$ for $\alpha < 1$ and loaded side stiffened by primary supporting members.

4.3 Factor K_1

4.3.1 The factor K_1 to be used for the calculation of thickness t_3 is given in Tab 8.
Table 8: Factor K_1 for plane panels

<table>
<thead>
<tr>
<th>Load pattern</th>
<th>Aspect ratio</th>
<th>Factor K_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>$0 \leq \psi \leq 1$</td>
<td>(\alpha \geq 1)</td>
<td>(\frac{8.4}{\psi + 1.1})</td>
</tr>
<tr>
<td></td>
<td>(\alpha < 1)</td>
<td>(\left(\frac{\alpha + 1}{\alpha} \right)^2 \frac{2.1}{\psi + 1.1})</td>
</tr>
<tr>
<td>$-1 < \psi < 0$</td>
<td>(\frac{1 - \psi}{2} \geq \frac{2}{3})</td>
<td>((1 + \psi)K_1 - \psi K_1 + 10\psi(1 + \psi))</td>
</tr>
<tr>
<td></td>
<td>(\frac{1 - \psi}{2} < \frac{2}{3})</td>
<td>(23.9\left(\frac{1 - \psi}{2}\right)^2)</td>
</tr>
</tbody>
</table>

Note 1:

- K_1' : Value of K_1 calculated for $\psi = 0$
- K_1'' : Value of K_1 calculated for $\psi = -1$

5 Direct calculation

5.1 Application

5.1.1 The requirements of this Section give direct calculation guidance for the yielding and buckling checks of structural members.

Direct calculation may be adopted instead of Rule scantling formulae or for the analysis of structural members not covered by the Rules.

5.1.2 Yielding check

The yielding check is to be carried out according to:

- [5.3] for structural members analysed through isolated beam models
- [5.4] for structural members analysed through three dimensional beam or finite element models.

5.1.3 Buckling check

The buckling check is to be carried out according to Ch 2, Sec 6, on the basis of the stresses in primary supporting members calculated according to [5.3] or [5.4], depending on the structural model adopted.

5.2 Analysis documentation

5.2.1 The following documents are to be submitted to the Society for review of the three dimensional beam or finite element structural analyses:

- reference to the calculation program used with identification of the version number and results of the validation test, if the results of the program have not been already submitted to the Society approval
- extent of the model, element types and properties, material properties and boundary conditions
- loads given in print-out or suitable electronic format. In particular, the method used to take into account the interaction between the overall, primary and local loadings is to be described. The direction and intensity of pressure loads, concentrated loads, inertia and weight loads are to be provided
- stresses given in print-out or suitable electronic format
- buckling checks
- identification of the critical areas, where the results of the checkings exceed 97.5% of the permissible rule criteria in [5.4.4] and Ch 2, Sec 6.

5.2.2 According to the results of the submitted calculations, the Society may request additional runs of the model with structural modifications or local mesh refinements in highly stressed areas.

5.3 Yielding check of structural members analysed through an isolated beam structural model

5.3.1 General

The requirements of this Sub-article apply to the yielding check of structural members subjected to lateral pressure or to wheeled loads and, for those contributing to the hull girder longitudinal strength, to hull girder normal stresses, which may be analysed through an isolated beam model.

The yielding check is also to be carried out for structural members subjected to specific loads, such as concentrated loads.
5.3.2 Load point

Unless otherwise specified, lateral pressure is to be calculated at mid-span of the structural member considered.

For longitudinal structural members contributing to the hull girder longitudinal strength, the hull girder normal stresses are to be calculated in way of the neutral axis of the structural member with attached plating.

5.3.3 Load model

The external pressure and the pressures induced by the various types of cargoes and ballast are to be considered, depending on the location of the structural member under consideration and the type of compartments adjacent to it, in accordance with Ch 3, Sec 4.

The pressure load in service conditions is to be determined according to Ch 3, Sec 4, [2] and Ch 3, Sec 4, [3].

For structural members subjected to wheeled loads, the yielding check may be carried out according to [5.3.4] considering uniform pressures equivalent to the distribution of vertical concentrated forces, when such forces are closely located, taking into account the most unfavourable case.

The hull girder normal stresses to be considered for the yielding check of structural members are to be determined according to Ch 4, Sec 2, [1.1].

5.3.4 Checking criteria

It is to be checked that the normal stress σ and the shear stress τ are in compliance with the following formulae:

$$\frac{R_y}{0.57} \geq \sigma$$

$$0.5 \frac{R_m}{0.57} \geq \tau$$

5.4 Yielding check of structural members analysed through a three dimensional structural model

5.4.1 General

The requirements of this Sub-article apply to the yielding check of structural members subjected to lateral pressure or to wheeled loads and, for those contributing to the hull girder longitudinal strength, to hull girder normal stresses, which are to be analysed through a three dimensional structural model.

The yielding check is also to be carried out for structural members subjected to specific loads, such as concentrated loads.

5.4.2 Analysis criteria

The analysis of structural members based on three dimensional models is to be carried out according to the requirements in:

- Ch 5, App 1 for structural members subjected to lateral pressure
- Ch 5, App 2 for structural members subjected to wheeled loads.

These requirements apply for:
- the structural modelling
- the load modelling
- the stress calculation.

5.4.3 Checking criteria for beam model analyses

For beam model analyses, according to Ch 5, App 1, [3.5], it is to be checked that the equivalent stress σ_{VM}, in N/mm2, calculated according to Ch 5, App 1, [5.2] is in compliance with the following formula:

$$\sigma_{VM} \leq \frac{R_y}{0.57}$$

where the partial safety factors are to be taken as given in Tab 4.

5.4.4 Checking criteria for finite element model analyses

a) Master allowable stress

The master allowable stress, σ_{MASTER}, in N/mm2, is to be obtained from the following formula:

$$\sigma_{MASTER} = \frac{R_y}{0.57}$$

b) General

For all types of analysis (see Ch 5, App 1, [3.4]), it is to be checked that the equivalent Von Mises stress σ_{VM}, calculated according to Ch 5, App 1, [5] is in compliance with the following formula:

$$\sigma_{VM} \leq \sigma_{MASTER}$$

c) Structural detail analysis based on very fine mesh finite elements models

In a fine mesh model as defined in Ch 5, App 1, [3.4.4], high stress areas for which σ_{VM} exceeds 0.95 σ_{MASTER} are to be investigated through a very fine mesh structural detail analysis according to Ch 5, App 1, [3.4.4], and the both following criteria are to be checked:

- the average Von Mises equivalent stress σ_{VM-av} as defined in item d) herebelow is to comply with the following formula:

$$\sigma_{VM-av} \leq \sigma_{MASTER}$$

- the equivalent stress σ_{VM} of each element is to comply with the following formulae:

 - for elements not adjacent to the weld:

 $$\sigma_{VM} \leq 1.53 \sigma_{MASTER}$$

 - for elements adjacent to the weld:

 $$\sigma_{VM} \leq 1.34 \sigma_{MASTER}$$

In the case of mesh finer than (50 mm x 50 mm), the equivalent stress σ_{VM} is to be obtained by averaging over an equivalent area of (50 mm x 50 mm), based on the methodology given in item d).
d) Stress averaging on very fine mesh

The average Von Mises equivalent stress $\sigma_{VM_{av}}$, in N/mm^2, is to be obtained from the following formula:

$$\sigma_{VM_{av}} = \frac{\sum A_i \sigma_{VM_i}}{n}$$

where:

- σ_{VM_i}: Von Mises stress at the centre of the i-th element within the considered area, in N/mm^2
- A_i: Area of the i-th element within the considered area, in mm^2
- n: Number of elements within the considered area.

Stress averaging is to be performed over an area defined as follows:

- the area considered for stress averaging is to have a size not above the relevant spacing of ordinary stiffeners ($s \times s$)
- for very fine mesh along rounded edges (openings, rounded brackets) the area considered for stress averaging is to be limited only to the first ring of border elements, over a length not greater than the relevant spacing of ordinary stiffeners (see Fig 1 and Fig 2)
- the area considered for stress averaging is to include an entire number of elements
- the area considered for stress averaging is not to be defined across structural discontinuities, web stiffeners or other abutting structure
- for regions where several different stress averaging areas may be defined, the worst is to be considered for the calculation of average Von Mises equivalent stress.

e) Particular requirements

For very fine mesh regions located on bracket webs in the vicinity of bracket toes, where an equivalent ($s \times s$) area cannot be defined, the yielding check is to be based only on the criteria given in the second bullet point of item d).

Other structural details having shapes not allowing the stress averaging as required in item d) are to be specially considered by the Society, on a case by case basis.

5.5 Torsion of catamarans

5.5.1 A method for the determination of scantlings of deck beams connecting the hulls of a catamaran subject to torsional moment is given in Ch 5, App 3.
SECTION 2

BOTTOM SCANTLINGS

Symbols

- **t**: Net thickness, in mm, of plating
- **s**: Spacing, in m, of ordinary stiffeners
- **S**: Spacing, in m, of primary supporting members
- **ℓ**: Span, in m, of ordinary stiffeners or primary supporting members defined in Ch 2, Sec 4, [3.2] or Ch 2, Sec 4, [4.2]
- **B₁**: Breadth, in m, of the hold or tank:
 - if no longitudinal bulkhead is fitted: \(B₁ = B - 2 B₂ \)
 - if a longitudinal bulkhead is fitted: \(B₁ = (B - 2 B₂) / 2 \)
- **B₂**: Breadth, in m, of the side tank
- **η**: Coefficient taken equal to: \(\eta = 1 - s / (2 \ell) \)
- **p**: Design lateral pressure, in kN/m², defined in [2]
- **pₑ**: External pressure, in kN/m², defined in Ch 3, Sec 4, [2]
- **pₑm**: River counterpressure, in kN/m², defined in Ch 3, Sec 4, [2]
- **pB**: Ballast pressure, in kN/m², defined in Ch 3, Sec 4, [3.1]
- **pC**: Liquid or dry cargo pressure, in kN/m², defined from Ch 3, Sec 4, [3.1] to Ch 3, Sec 4, [3.3]
- **σₓₓ**: Hull girder normal stress, in N/mm², defined in [3]
- **n**: Navigation coefficient defined in Ch 3, Sec 1, [5.2]
- **βₗ, βₛ**: Span correction coefficients defined in Ch 2, Sec 3, [5.2]
- **w**: Net section modulus, in cm³, of ordinary stiffeners or primary supporting members
- **Aₗ**: Net shear sectional area, in cm²
- **k**: Material factor defined in Ch 2, Sec 3, [2.4] and Ch 2, Sec 3, [3.4]
- **Rₚ**: Minimum yield stress, in N/mm², of the material, to be taken equal to 235/k N/mm², unless otherwise specified
- **Rₑt**: Minimum yield stress, in N/mm², of the material, defined in Ch 2, Sec 3, [2]
- **γₑ**: Partial safety factor covering uncertainties regarding resistance, defined in Ch 5, Sec 1, [1.3]
- **γₘ**: Partial safety factor covering uncertainties regarding material, defined in Ch 5, Sec 1, [1.3]
- **E**: Young’s modulus, in N/mm², to be taken equal to:
 - for steels in general: \(E = 2,06 \times 10⁵ \) N/mm²
 - for stainless steels: \(E = 1,95 \times 10⁵ \) N/mm²
 - for aluminium alloys: \(E = 7,0 \times 10⁴ \) N/mm²
- **v**: Poisson’s ratio. Unless otherwise specified, a value of 0.3 is to be taken into account
- **c**: Dry bulk coefficient to be taken equal to:
 \[c = \frac{p_c}{9.1 \rho_B B \tan \phi_B} \]
 with \(0.55 \leq c \leq 1 \)
- **ρₑ**: Dry bulk cargo density, in t/m³
- **φₑ**: Dry bulk cargo angle of repose, in degree
- **Mᵥₑ**: Total vertical bending moment in hogging condition, in kN.m, to be determined according to Ch 3, Sec 2, [5]
- **Mᵥₛ**: Total vertical bending moment in sagging condition, in kN.m, to be determined according to Ch 3, Sec 2, [5]
- **Iᵥ**: Net moment of inertia, in cm⁴, of the hull transverse section around its horizontal neutral axis, to be calculated according to Ch 4, Sec 1
- **N**: Z co-ordinate, in m, of the centre of gravity of the hull transverse section
- **α**: Aspect ratio defined in Ch 5, Sec 1, [4.1.1]
- **b**: Length, in m, of loaded side of the plate panel
- **ψ**: Edge stress ratio defined in Ch 5, Sec 1, [4.1.2]
- **Fₑ**: Correction factor defined in Ch 5, Sec 1, [4.2.1]
- **Kₑ**: Factor defined in Ch 5, Sec 1, [4.3.1].
1 General

1.1 Application

1.1.1 The requirements of this Section apply to longitudinally or transversely framed single and double bottom structures of vessels covered by these Rules.

The requirements applicable to specific vessel notations are defined in Part D.

1.2 General arrangement

1.2.1 The bottom structure is to be checked by the designer to make sure that it withstands the loads resulting from the dry-docking of the vessel.

1.2.2 The bottom is to be locally stiffened where concentrated loads are envisaged.

1.2.3 Girders or floors are to be fitted under each line of pillars, when deemed necessary by the Society on the basis of the loads carried by the pillars.

1.2.4 Adequate tapering is to be provided between double bottom and adjacent single bottom structures. Similarly, adequate continuity is to be provided in the case of height variation in the double bottom. Where such a height variation occurs within 0.6 L amidships, the inner bottom is generally to be maintained continuous by means of inclined plating.

1.2.5 Provision is to be made for the free passage of water from all parts of the bottom to the suction.

1.2.6 When solid ballast is fitted, it is to be securely positioned. If necessary, intermediate floors may be required for this purpose.

1.3 Keel

1.3.1 Vessels having a rise of floor are to be fitted with a keel plate of about 0.1 B in width, with a thickness equal to 1.15 times the bottom plating thickness.

In the case there is no rise of floor, the keel plate thickness is to be not less than the bottom plating thickness.

1.4 Bilge

1.4.1 Radius

Where the bilge plating is rounded, the radius of curvature is not to be less than 20 times the thickness of the plating.

1.4.2 Extension of rounded bilge

The bilge is to extend at least 100 mm on either side of the rounded part.

1.4.3 On tank vessels for oil and/or chemicals, wear plates in form of doubling plates are not permitted to be attached to the bilge plating within the cargo area, i.e. between the aftmost and the foremost cofferdam bulkhead.

1.5 Drainage and openings for air passage

1.5.1 Holes are to be cut into floors and girders to ensure the free passage of air and liquids from all parts of the double bottom.

2 Design lateral pressures

2.1 General

2.1.1 The design lateral pressures are to be calculated independently for all applicable load cases according to Ch 3, Sec 1, [4].

2.2 Plating design lateral pressures

2.2.1 The design lateral pressures p to be used for bottom and inner bottom plating scantling are given in Tab 1.

Table 1 : Plating design lateral pressures

<table>
<thead>
<tr>
<th>Structure</th>
<th>Structural item</th>
<th>Design lateral pressure p, in kN/m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single bottom</td>
<td>Bottom plating</td>
<td>• (p_E)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• (p_C - p_{Em})</td>
</tr>
<tr>
<td>Double bottom</td>
<td>Bottom plating</td>
<td>• (p_E)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• (p_B - p_{Em})</td>
</tr>
<tr>
<td></td>
<td>Inner bottom plating</td>
<td>• (p_B)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• (p_C)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• (p_{FL})</td>
</tr>
</tbody>
</table>

2.3 Structural member design lateral pressures

2.3.1 The design lateral pressures to be used for bottom and inner bottom structural member scantling are given in Tab 2.

Table 2 : Structural member design lateral pressures

<table>
<thead>
<tr>
<th>Structure</th>
<th>Structural item</th>
<th>Design lateral pressure p, in kN/m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single bottom</td>
<td>Bottom longitudinals</td>
<td>• (p_E)</td>
</tr>
<tr>
<td></td>
<td>Floors</td>
<td>• (p_E)</td>
</tr>
<tr>
<td></td>
<td>Bottom transverses</td>
<td>• (p_{Bd} - p_{Em}) (1)</td>
</tr>
<tr>
<td></td>
<td>Bottom girders</td>
<td>• (p_E)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• (p_C - p_{Em})</td>
</tr>
<tr>
<td>Double bottom</td>
<td>Bottom longitudinals</td>
<td>• (p_E)</td>
</tr>
<tr>
<td></td>
<td>Inner bottom longitudinals</td>
<td>• (p_B)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• (p_{Bd})</td>
</tr>
<tr>
<td></td>
<td>Floors</td>
<td>• (p_E)</td>
</tr>
<tr>
<td></td>
<td>Double bottom transverses</td>
<td>• (p_{Bd} - p_{Em}) (1)</td>
</tr>
<tr>
<td></td>
<td>Double bottom girders</td>
<td>• (p_E)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• (p_C - p_{Em})</td>
</tr>
</tbody>
</table>

(1) For dry bulk cargo: \(p_{Bd} = c \cdot p_{E} \)
For other type of cargo: \(p_{Bd} = p_{C} \)
3 Hull girder normal stresses

3.1 General

3.1.1 The hull girder normal stresses are to be calculated for load cases “a” and “b” independently.

3.2 Plating subjected to lateral pressure

3.2.1 The hull girder normal stresses to be considered for the strength check of plating subjected to lateral pressure are to be determined using the formula:

\[\sigma_{x1} = 10^{3} \frac{M_{in}}{I_y} \left(z - N \right) \]

3.3 Structural members subjected to lateral pressure

3.3.1 The hull girder normal stresses to be considered for the yielding check of structural members subjected to lateral pressure and contributing to the longitudinal strength are given in Tab 3.

Table 3 : Hull girder normal stresses - Structural members subjected to lateral pressure

<table>
<thead>
<tr>
<th>Condition</th>
<th>(\sigma_{x1}), in N/mm²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lateral pressure applied on the side opposite to the structural member, with respect to the plating</td>
<td>In general</td>
</tr>
<tr>
<td>For ordinary stiffeners simply supported at both ends</td>
<td>(10^{3} \frac{M_{in}}{I_y} \left(z - N \right))</td>
</tr>
<tr>
<td>Lateral pressure applied on the same side as the structural member</td>
<td>In general</td>
</tr>
<tr>
<td>For ordinary stiffeners simply supported at both ends</td>
<td>(10^{3} \frac{M_{in}}{I_y} \left(z - N \right))</td>
</tr>
</tbody>
</table>

4 Hull girder normal compression stresses

4.1 The hull girder normal compression stresses to be considered for the buckling check of the plating and structural members which contribute to the longitudinal strength are given by the following formula:

\[\sigma_{x1} = 10^{3} \frac{M_{in}}{I_y} \left(z - N \right) \]

4.2 Plating scantling

4.1 Plating net thicknesses

4.1.1 In the central part, the bottom and inner bottom plating net thicknesses, in mm, are not to be less than the values \(t_1 \) and \(t_2 \) given in Tab 4.

Table 4 : Bottom and inner bottom plating net thicknesses, in mm

<table>
<thead>
<tr>
<th>Plating</th>
<th>Transverse framing</th>
<th>Longitudinal framing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bottom</td>
<td>(t_1 = 1,85 + 0,03 , L , k^{0.5} + 3,6 , s)</td>
<td>(t_1 = 1,1 + 0,03 , L , k^{0.5} + 3,6 , s)</td>
</tr>
<tr>
<td></td>
<td>(t_2 = 17,2 , C_s , C_s \sqrt{\frac{\gamma_m D}{K_f \sigma_{x1}}})</td>
<td>(t_2 = 14,9 , C_s , C_s \sqrt{\frac{\gamma_m D}{K_f \sigma_{x1}}})</td>
</tr>
<tr>
<td>Inner bottom</td>
<td>(t_1 = 1,5 + 0,016 , L , k^{0.5} + 3,6 , s)</td>
<td>(t_1 = 1,5 + 0,016 , L , k^{0.5} + 3,6 , s)</td>
</tr>
<tr>
<td></td>
<td>(t_2 = 17,2 , C_s , C_s \sqrt{\frac{\gamma_m D}{K_f \sigma_{x1}}})</td>
<td>(t_2 = 14,9 , C_s , C_s \sqrt{\frac{\gamma_m D}{K_f \sigma_{x1}}})</td>
</tr>
</tbody>
</table>

Note 1:

\[\lambda_\ell = \sqrt{1 - 0.95 \left(\frac{\sigma_{x1}}{\gamma_m} \right)^2} - 0.225 \gamma_m \frac{\sigma_{x1}}{\gamma_m} \]

\[\lambda_1 = 1 - 0.89 \gamma_m \frac{\sigma_{x1}}{\gamma_m} \]
4.4 Bilge plating

4.4.1 Rounded bilge plating

The bilge plating net thickness, in mm, is to be not less than the following values:

- in the case of a bilge radius of curvature practically equal to the floor depth or bottom transverse depth:
 \[t = 1.15 t_0 \]
- in the case of a bilge radius of curvature less than the floor depth or bottom transverse depth but greater than 20 times the bottom plating thickness:
 \[t = 1.15 t_0 + 1 \]

where \(t_0 = \max (t_1 ; t_2 ; t_3) \) for adjacent bottom plating.

Figure 1 : Square bilge

4.4.2 Square bilge plating

In the case of a square bilge with chine bars (sketches a, b, c and e of Fig 1), the net scantling of the chine bar is to be determined as follows:

- angle bars inside the hull: \(t = t_0 + 2 \)
- other cases: \(t = t_0 + 3 \)

- round bars and square bars

The diameter of the round bars or the side of the square bars is to be not less than 30 mm.

4.5 Structural member scantlings

5.1 Minimum web net thicknesses

5.1.1 Ordinary stiffeners

The net thickness, in mm, of the web of ordinary stiffeners is to be not less than:

- \(L < 120 \): \(t = 1.63 + 0.004 L^{0.5} + 4.5 \)
- \(L \geq 120 \): \(t = 3.9 L^{0.5} + s \)

5.1.2 Primary supporting members

The net thickness, in mm, of plating which forms the web of primary supporting members is to be not less than the value obtained from the following formula:

\[t = 3.8 + 0.016 L^{0.5} \]
5.2 Net section modulus and net shear sectional area of structural members

5.2.1 The net scantlings of single and double bottom structural members are not to be less than the values obtained from:
- Tab 5 for single bottom structure
- Tab 6 for double bottom structure,

taking into account the following for double bottom floors and transverses:
- in way of side plate web frames or where the inner side plating extends down to the bottom plating:
 \(\ell = B_1 \) and \(B_3 = 0 \)
- elsewhere:
 if no longitudinal bulkhead is fitted: \(\ell = B \) and \(B_1 = B_2 \)
 if a longitudinal bulkhead is fitted: \(\ell = 0,5B \) and \(B_3 = 0,5B_2 \)

5.3 Strength check in testing conditions

5.3.1 Structural members subjected to lateral pressure in testing conditions are to comply with Ch 5, Sec 1, [3].

5.4 Buckling strength check

5.4.1 Buckling strength check of bottom and inner bottom structural members is to comply with Ch 2, Sec 6.

6 Transversely framed single bottom

6.1 Floors

6.1.1 Floors are to be fitted at every frame.

6.1.2 Minimum shear sectional area of floors

The minimum shear sectional area \(A_{sb} \) of floors, in \(\text{cm}^2 \), is to be not less than the value given in Tab 5, however, the Society may waive this rule subject to direct calculation of the shearing stresses.

Table 6 : Net scantlings of double bottom structure

<table>
<thead>
<tr>
<th>Item</th>
<th>(w), in (\text{cm}^3)</th>
<th>(A_{sb}), in (\text{cm}^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bottom longitudinals Inner bottom longitudinals</td>
<td>(w = \frac{\gamma_t B_1 B_2 P_2}{m(R_s - \gamma_t B_1 \sigma_{sl})} \sqrt{\ell} \times 10^{3})</td>
<td>(A_{sb} = 10\gamma_t B_1 B_2 P_2 R_s \frac{1}{\gamma_t} \ell)</td>
</tr>
<tr>
<td>Floors in the way of hold / cargo tank (1)</td>
<td>(w = \max (w_1 ; w_2))</td>
<td>(A_{sb} = \max (A_1 ; A_2))</td>
</tr>
<tr>
<td></td>
<td>(w_1 = \frac{\gamma_t B_1 B_2 P_2}{m(R_s - \gamma_t B_1 \sigma_{sl})} \sqrt{\ell - 2B_3} \times 10^{3})</td>
<td>(A_1 = 10\gamma_t B_1 B_2 P_2 R_s \frac{1}{\gamma_t} \ell)</td>
</tr>
<tr>
<td></td>
<td>(w_2 = \frac{\gamma_t B_1 B_2 (P_1 - P_m)}{m R_s} \times \sqrt{\ell - 2B_3} \times 10^{3})</td>
<td>(A_2 = 10\gamma_t B_1 B_2 (P_1 - P_m) R_s \frac{1}{\gamma_t} \ell)</td>
</tr>
<tr>
<td>Floors in the way of side tank (1)</td>
<td>(w = \max (w_1 ; w_2))</td>
<td>(A_{sb} = \max (A_1 ; A_2))</td>
</tr>
<tr>
<td></td>
<td>(w_1 = 4,2 \frac{\gamma_t B_1 B_2 P_2}{m R_s} \sqrt{\ell - 2B_3} \times 10^{3})</td>
<td>(A_1 = 10\gamma_t B_1 B_2 P_2 R_s \frac{1}{\gamma_t} \ell)</td>
</tr>
<tr>
<td></td>
<td>(w_2 = 4,2 \frac{\gamma_t B_1 B_2 (P_1 - P_m)}{m R_s} \sqrt{\ell - 2B_3} \times 10^{3})</td>
<td>(A_2 = 10\gamma_t B_1 B_2 (P_1 - P_m) R_s \frac{1}{\gamma_t} \ell)</td>
</tr>
<tr>
<td>Bottom transverses in the hold / cargo tank</td>
<td>(w = \max (w_1 ; w_2))</td>
<td>(A_{sb} = \max (A_1 ; A_2))</td>
</tr>
<tr>
<td></td>
<td>(w_1 = \frac{\gamma_t B_1 B_2 P_2}{m R_s} \times \sqrt{\ell - 2B_3} \times 10^{3})</td>
<td>(A_1 = 10\gamma_t B_1 B_2 P_2 R_s \frac{1}{\gamma_t} \ell)</td>
</tr>
<tr>
<td></td>
<td>(w_2 = \frac{\gamma_t B_1 B_2 (P_1 - P_m)}{m R_s} \times \sqrt{\ell - 2B_3} \times 10^{3})</td>
<td>(A_2 = 10\gamma_t B_1 B_2 (P_1 - P_m) R_s \frac{1}{\gamma_t} \ell)</td>
</tr>
<tr>
<td>Bottom transverses in the side tank</td>
<td>(w = \max (w_1 ; w_2))</td>
<td>(A_{sb} = \max (A_1 ; A_2))</td>
</tr>
<tr>
<td></td>
<td>(w_1 = \frac{\gamma_t B_1 B_2 P_2}{m R_s} \times \sqrt{\ell - 2B_3} \times 10^{3})</td>
<td>(A_1 = 10\gamma_t B_1 B_2 P_2 R_s \frac{1}{\gamma_t} \ell)</td>
</tr>
<tr>
<td></td>
<td>(w_2 = \frac{\gamma_t B_1 B_2 (P_1 - P_m)}{m R_s} \times \sqrt{\ell - 2B_3} \times 10^{3})</td>
<td>(A_2 = 10\gamma_t B_1 B_2 (P_1 - P_m) R_s \frac{1}{\gamma_t} \ell)</td>
</tr>
<tr>
<td>Bottom centre and side girders (2)</td>
<td>(w = \frac{\gamma_t B_1 B_2 P_2}{m(R_s - \gamma_t B_1 \sigma_{sl})} \times \sqrt{\ell} \times 10^{3})</td>
<td>(A_{sb} = 10\gamma_t B_1 B_2 P_2 R_s \frac{1}{\gamma_t} \ell)</td>
</tr>
</tbody>
</table>

(1) In way of side ordinary frames: \(B_6 = B_8 = 1 \)
(2) The span \(\ell \) is to be taken equal to the web frames or side transverses spacing.

Note 1: The value of \(\sigma_{sl} \) is to be taken in relation with the pressure \(p \) considered.

Note 2:
- \(m \): Boundary coefficient, to be taken equal to:
 - \(m = 12 \) for bottom and inner bottom longitudinals
 - \(m = 8 \) for other double bottom structural members.
6.1.3 Floor height
Where the ratio of the floor web height to its net thickness exceeds 100, the floor web is to be provided with stiffeners in compliance with Ch 2, Sec 4, [4.8.1].
In the case of vessels with rise of floor, the floor height may be required to be increased so as to assure a satisfactory connection to the side frames.

6.2 Girders
6.2.1 Centre girder
All single bottom vessels are to have a centre girder. The Society may waive this rule for vessels with BF less than 6 m, when the floor is a rolled section or when the floor stability is covered otherwise, where BF is the breadth of the vessel, in m, measured on the top of floor.
The web depth of the centre girder has to extend to the floor plate upper edge. The web thickness is not to be less than that of the floor plates.
Centre girder is to be fitted with a face plate or a flange, the net sectional area of which, in cm², is not to be less than:
\[A_f = 0.6 \times L + 2.7 \]

6.2.2 Side girders
Depending on the breadth Bₗ defined in [6.2.1], side girders are to be fitted in compliance with the following:
- Bₗ ≤ 6 m: no side girder
- 6 m < Bₗ ≤ 9 m: one side girder at each side
- Bₗ > 9 m: two side girders at each side.
Side girders are to be fitted with a face plate or a flange, the net sectional area of which is not to be less than that of the floor plate.

6.2.3 Centre and side girders are to be extended as far aft and forward as practicable.
Intercostal web plates of centre and side girders are to be aligned and welded to floors.

6.2.4 Where two girders are slightly offset, they are to be shifted over a length at least equal to two frame spacings.

6.2.5 Towards the ends, the thickness of the web plate as well as the sectional area of the top plate may be reduced by 10%. Lightening holes are to be avoided.

6.2.6 Where side girders are fitted in lieu of the centre girder, the scarfing is to be adequately extended and additional stiffening of the centre bottom may be required.

7 Longitudinally framed single bottom
7.1 Bottom longitudinals
7.1.1 General
Longitudinal ordinary stiffeners are generally to be continuous when crossing primary supporting members.

7.1.2 Strengthening
The section modulus of longitudinals located in way of the web frames of transverse bulkheads is to be increased by 10%.
The Society may call for strengthening of the longitudinal located in the centreline of the vessel.

7.2 Bottom transverses
7.2.1 Spacing
In general, the transverse spacing is to be not greater than 8 frame spacings, nor than 4 m, which is the lesser.

7.2.2 Minimum shear sectional area of bottom transverses
Taking into account the possible cuttings provided for the longitudinals, the minimum shear sectional area Aₗₜ of bottom transverses, in cm², is to be not less than the value given in Tab 5, however, the Society may waive this rule subject to direct calculation of the shearing stresses.

7.2.3 Bottom transverse height
Where the ratio of the bottom transverse web height to its net thickness exceeds 100, the bottom transverse web is to be provided with stiffeners in compliance with Ch 2, Sec 4, [4.8.1] to Ch 2, Sec 4, [4.8.3], as applicable. The stiffeners are to extend between the longitudinals and the upper faceplate of the transverse, without any connection with that faceplate.
In the case of vessels with rise of floor, the bottom transverse height may be required to be increased so as to assure a satisfactory connection to the side transverses.

7.3 Girders
7.3.1 The requirements in [6.2] apply also to longitudinally framed single bottoms, with transverses instead of floors.
Where the ratio of the girder web height to its net thickness exceeds 100, the girder web is to be provided with stiffeners in compliance with Ch 2, Sec 4, [4.8.1].

8 Transversely framed double bottom
8.1 Double bottom arrangement
8.1.1 Where the height of the double bottom varies in the longitudinal direction, the variation is to be made gradually over an adequate length.
The knuckles of inner bottom plating are to be located in way of plate floors. Where this is impossible, suitable longitudinal structures such as partial girders, longitudinal brackets etc., fitted across the knuckle are to be arranged.

8.1.2 For vessels without a flat bottom, the height of double bottom specified in [8.1.1] may be required to be adequately increased such as to ensure sufficient access to the areas towards the sides.

8.1.3 Strength continuity
Adequate strength continuity of floors is to be ensured in way of the side tank by means of brackets.
8.2 Floors

8.2.1 Spacing
Floors are to be fitted at every frame.
Watertight floors are to be fitted:
- in way of transverse watertight bulkheads
- in way of double bottom steps.

8.2.2 In general, floors are to be continuous.

8.2.3 Minimum shear sectional area of floors
The minimum shear sectional area A_{sh} of floors, in cm², is to be not less than the value given in Tab 6, however, the Society may waive this rule subject to direct calculation of the shearing stresses.

8.2.4 Where the double bottom height does not enable to connect the floors and girders to the inner bottom by fillet welding, slot welding may be used. In that case, the floors and girders are to be fitted with a face plate or a flange.

8.3 Bilge wells

8.3.1 Bilge wells arranged in the double bottom are to be limited in depth and formed by steel plates having a thickness not less than the greater of that required for watertight floors and that required for the inner bottom.

8.3.2 In vessels subject to stability requirements, such bilge wells are to be fitted so that the distance of their bottom from the shell plating is not less than 400 mm.

8.4 Girders

8.4.1 A centre girder is to be fitted on all vessels exceeding 6 m in breadth.
This centre girder is to be formed by a vertical intercostal plate connected to the bottom plating and to double bottom top.
The intercostal centre girder is to extend over the full length of the vessel or over the greatest length consistent with the lines. It is to have the same thickness as the floors. No manholes are to be provided into the centre girder.

8.4.2 For vessels with a range of navigation $IN(1,2 \leq x < 2)$, continuous or intercostal girders are to be fitted in the extension of the inner sides. These girders are to have a net thickness equal to that of the inner sides.
For vessels with a range of navigation $IN(x < 1,2)$ built in the transverse system and without web frames, partial intercostal girders are to be fitted in way of the transverse bulkheads of the side tanks, in extension of the inner sides. These girders are to be extended at each end by brackets having a length equal to one frame spacing. They are to have a net thickness equal to that of the inner sides.

9 Longitudinally framed double bottom

9.1 General

9.1.1 The requirements in [8.1], [8.3] and [8.4] are applicable to longitudinally framed double bottoms.

9.2 Transverses

9.2.1 The spacing of transverses, in m, is generally to be not greater than 8 frame spacings nor 4 m, whichever is the lesser. Additional transverses are to be fitted in way of transverse watertight bulkheads.
Where the ratio of the double bottom transverse web height to its net thickness exceeds 100, the double bottom transverse web is to be provided with stiffeners in way of longitudinals in compliance with Ch 2, Sec 4, [4.8.1] to Ch 2, Sec 4, [4.8.3], as applicable. The stiffeners are to extend between the longitudinals and the upper faceplate of the transverse, without any connection with that faceplate.

9.3 Bottom and inner bottom longitudinal ordinary stiffeners

9.3.1 Bottom and inner bottom longitudinal ordinary stiffeners are generally to be continuous through the transverses. In the case the longitudinals are interrupted in way of a transverse, brackets on both sides of the transverse are to be fitted in perfect alignment.

9.4 Brackets to centreline girder

9.4.1 In general, intermediate brackets are to be fitted connecting the centre girder to the nearest bottom and inner bottom ordinary stiffeners.

9.4.2 Such brackets are to be stiffened at the edge with a flange having a width not less than 1/10 of the local double bottom height.
If necessary, the Society may require a welded flat bar to be arranged in lieu of the flange.
SECTION 3 SIDE SCANTLINGS

Symbols

\(t \) : Net thickness, in mm, of plating

\(s \) : Spacing, in m, of ordinary stiffeners

\(S \) : Spacing, in m, of primary supporting members

\(\ell \) : Span, in m, of ordinary stiffeners or primary supporting members, defined in Ch 2, Sec 4, [3.2] or Ch 2, Sec 4, [4.2]

\(\eta \) : Coefficient taken equal to:

\[\eta = 1 - s/(2 \ell) \]

\(\rho \) : Design lateral pressure, in kN/m\(^2\), defined in [2]

\(\rho_t \) : External pressure, in kN/m\(^2\), defined in Ch 3, Sec 4, [2]

\(\rho_{rm} \) : River counterpressure, in kN/m\(^2\), defined in Ch 3, Sec 4, [2]

\(\rho_b \) : Ballast pressure, in kN/m\(^2\), defined in Ch 3, Sec 4, [3.1]

\(\rho_c \) : Liquid or dry cargo pressure, in kN/m\(^2\), defined from Ch 3, Sec 4, [3.1] to Ch 3, Sec 4, [3.3]

\(g \) : Gravitational acceleration:

\[g = 9,81 \text{ m/s}^2 \]

\(\sigma_{X1} \) : Hull girder normal stress, in N/mm\(^2\), defined in [3]

\(n \) : Navigation coefficient defined in Ch 3, Sec 1, [5.2]

\(\beta_b, \beta_s \) : Span correction coefficients defined in Ch 2, Sec 4, [5.2]

\(\lambda_b, \lambda_s \) : Coefficients for pressure distribution correction defined in Ch 2, Sec 4, [5.3]

\(w \) : Net section modulus, in cm\(^4\), of ordinary stiffeners or primary supporting members

\(\Lambda_{sh} \) : Net shear sectional area, in cm\(^2\)

\(k \) : Material factor defined in Ch 2, Sec 3, [2.4] and Ch 2, Sec 3, [3.4]

\(R_y \) : Minimum yield stress, in N/mm\(^2\), of the material, to be taken equal to 235/k N/mm\(^2\), unless otherwise specified

\(R_{dyf} \) : Minimum yield stress, in N/mm\(^2\), of the material, defined in Ch 2, Sec 3, [2]

\(\gamma_k \) : Partial safety factor covering uncertainties regarding resistance, defined in Ch 5, Sec 1, [1.3]

\(\gamma_m \) : Partial safety factor covering uncertainties regarding material, defined in Ch 5, Sec 1, [1.3]

\(E \) : Young's modulus, in N/mm\(^2\), to be taken equal to:

- for steels in general:
 \[E = 2,06.10^5 \text{ N/mm}^2 \]

- for stainless steels:
 \[E = 1,95.10^5 \text{ N/mm}^2 \]

- for aluminium alloys:
 \[E = 7,0.10^4 \text{ N/mm}^2 \]

\(\gamma_t \) : Poisson’s ratio. Unless otherwise specified, a value of 0,3 is to be taken into account

\(z \) : Z co-ordinate, in m, of the calculation point

\(C_a \) : Aspect ratio, equal to:

\[C_a = 1,21 \sqrt{1 + 0,33 \left(\frac{S}{\ell} \right)^2} - 0,69 \frac{S}{\ell} \leq 1 \]

\(C_r \) : Coefficient of curvature:

\[C_r = 1 - 0,5 \frac{S}{\ell} \geq 0,5 \]

where:

\(r \) : Radius of curvature, in m

\(M_{TH} \) : Total vertical bending moment in hogging condition, in kN.m, to be determined according to Ch 3, Sec 2, [5]

\(M_{MS} \) : Total vertical bending moment in sagging condition, in kN.m, to be determined according to Ch 3, Sec 2, [5]

\(I_V \) : Net moment of inertia, in cm\(^4\), of the hull transverse section around its horizontal neutral axis, to be calculated according to Ch 4, Sec 1

\(\alpha \) : Aspect ratio defined in Ch 5, Sec 1, [4.1.1]

\(b \) : Length, in m, of loaded side of the plate panel

\(\psi \) : Edge stress ratio defined in Ch 5, Sec 1, [4.1.2]

\(F_i \) : Correction factor defined in Ch 5, Sec 1, [4.2.1]

\(K_i \) : Factor defined in Ch 5, Sec 1, [4.3.1].

1 General

1.1 Application

1.1.1 The requirements of this Section apply to longitudinally or transversely framed single and double side structures of vessels covered by these Rules.

The requirements applicable to specific vessel notations are defined in Part D.

1.2 General arrangement

1.2.1 The transversely framed side structures are built with transverse frames possibly supported by struts, side stringers and web frames.
1.2.2. The longitudinally framed side structures are built with longitudinal ordinary stiffeners supported by side vertical primary supporting members.

2 Design lateral pressures

2.1 General

2.1.1 The design lateral pressures are to be calculated independently for all applicable load cases according to Ch 3, Sec 1, [4].

2.2 Plating and structural member design lateral pressures

2.2.1 The design lateral pressures to be used for side and inner side plating and structural members are given in Tab 1.

3 Hull girder normal stresses

3.1 General

3.1.1 The hull girder normal stresses are to be calculated for load cases “a” and “b” independently.

3.2 Plating subjected to lateral pressure

3.2.1 The hull girder normal stresses to be considered for the strength check of plating subjected to lateral pressure are to be determined using the formula:

\[
\sigma_{x1} = 10 \left[\max \left(\frac{M_{E1}; M_{c1}}{I_y} \right) \right] (z - N)
\]

3.3 Structural members subjected to lateral pressure

3.3.1 The hull girder normal stresses to be considered for the yielding check of structural members subjected to lateral pressure and contributing to the longitudinal strength are given in Tab 3.

3.4 Hull girder normal compression stresses

3.4.1 The hull girder normal compression stresses to be considered for the buckling strength check of the plating and structural members which contribute to the longitudinal strength are given in Tab 2.

4 Plating scantling

4.1 Plating net thicknesses

4.1.1 In the central part, the side and inner side plating net thicknesses, in mm, are not to be less than the values \(t_1 \) and \(t_2 \) given in Tab 4.

Table 1: Side and inner side design lateral pressures

<table>
<thead>
<tr>
<th>Structure</th>
<th>Structural item</th>
<th>Design lateral pressure (p), in kN/m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single side</td>
<td>Side plating and structural members</td>
<td>(p_1) (p_c - p_{em})</td>
</tr>
<tr>
<td>Double side</td>
<td>Side plating and structural members</td>
<td>(p_1) (p_c - p_{em})</td>
</tr>
<tr>
<td></td>
<td>Inner side plating and structural members</td>
<td>(p_c) (p_h) (p_{em})</td>
</tr>
<tr>
<td></td>
<td>Plate web frames</td>
<td>(p_c) (p_c - p_{em})</td>
</tr>
</tbody>
</table>

Table 2: Hull girder normal compression stresses

<table>
<thead>
<tr>
<th>Condition</th>
<th>(\sigma_{x1}), in N/mm²</th>
</tr>
</thead>
<tbody>
<tr>
<td>(z \geq N)</td>
<td>(\sigma_{x1} = 10 \frac{M_{E1}}{I_y} (z - N))</td>
</tr>
<tr>
<td>(z < N)</td>
<td>(\sigma_{x1} = 10 \frac{M_{c1}}{I_y} (z - N))</td>
</tr>
</tbody>
</table>

Table 3: Hull girder normal stresses

<table>
<thead>
<tr>
<th>Condition</th>
<th>Structural members subjected to lateral pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lateral pressure applied on the side opposite to the structural member, with respect to the plating</td>
<td>(z \geq N) in general; (z < N) for ordinary stiffeners simply supported at both ends</td>
</tr>
<tr>
<td></td>
<td>(10 \frac{M_{E1}}{I_y} (z - N))</td>
</tr>
<tr>
<td>Lateral pressure applied on the same side as the structural member</td>
<td>(z \geq N) in general; (z < N) for ordinary stiffeners simply supported at both ends</td>
</tr>
<tr>
<td></td>
<td>(10 \frac{M_{E1}}{I_y} (z - N))</td>
</tr>
<tr>
<td>Lateral pressure applied on the side opposite to the structural member, with respect to the plating</td>
<td>(z \geq N) in general; (z < N) for ordinary stiffeners simply supported at both ends</td>
</tr>
<tr>
<td></td>
<td>(10 \frac{M_{c1}}{I_y} (z - N))</td>
</tr>
<tr>
<td>Lateral pressure applied on the same side as the structural member</td>
<td>(z \geq N) in general; (z < N) for ordinary stiffeners simply supported at both ends</td>
</tr>
<tr>
<td></td>
<td>(10 \frac{M_{c1}}{I_y} (z - N))</td>
</tr>
</tbody>
</table>
Table 4: Side and inner side plating net thicknesses, in mm

<table>
<thead>
<tr>
<th>Plating</th>
<th>Transverse framing</th>
<th>Longitudinal framing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Side</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t_1</td>
<td>$1,68 + 0,025 L^{0.5} + 3.6 s$</td>
<td>$1,25 + 0.02 L^{0.5} + 3.6 s$</td>
</tr>
<tr>
<td>t_2</td>
<td>$17,2C_s \sqrt{\frac{\gamma_m \sigma_{b}}{\lambda_s R_s}}$</td>
<td>$14,9C_s \sqrt{\frac{\gamma_m \sigma_{b}}{\lambda_s R_s}}$</td>
</tr>
<tr>
<td>Inner side</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t_1</td>
<td>$2 + 0.003 L^{0.5} + 3.6 s$</td>
<td>$2 + 0.003 L^{0.5} + 3.6 s$</td>
</tr>
<tr>
<td>t_2</td>
<td>$17,2C_s \sqrt{\frac{\gamma_m \sigma_{b}}{\lambda_s R_s}}$</td>
<td>$14,9C_s \sqrt{\frac{\gamma_m \sigma_{b}}{\lambda_s R_s}}$</td>
</tr>
</tbody>
</table>

Note 1:

$$\lambda_s = \sqrt{1 - 0.95 \left(\frac{\gamma_m \sigma_{b}}{R_s} \right)^2} - 0.225 \gamma_m \frac{\sigma_{b}}{R_s}$$

$$\lambda_i = 1 - 0.89 \gamma_m \frac{\sigma_{b}}{R_s}$$

4.2 Strength check in testing conditions

4.2.1 Plating subjected to lateral pressure in testing conditions are to comply with Ch 5, Sec 1, [3].

4.3 Buckling strength check

4.3.1 The side and inner side plating thicknesses, in mm, are to comply with the following formulae:

$$t_1 = \frac{b}{\pi} \left[12 \gamma_T \frac{\sigma_{b}}{R_s} \right]^{1/3} \left(1 - \frac{v}{v} \right) 10^{1.1} \text{ for } \sigma_{b} \leq \frac{R_{eff}}{2}$$

$$t_1 = \frac{b}{\pi} \left[3 \frac{R_{eff}}{E} \left(R_{eff} - 3 \gamma_T \frac{\sigma_{b}}{R_s} \right) \right]^{1/3} \left(1 - \frac{v}{v} \right) 10^{1.1} \text{ for } \sigma_{b} > \frac{R_{eff}}{2}$$

where σ_{b} is the maximum hull girder compression stress on the plate panel determined according to [3.4].

Buckling strength may be checked in compliance with Ch 2, Sec 6, at the Society’s discretion.

5 Structural member scantlings

5.1 Minimum web net thicknesses

5.1.1 Ordinary stiffeners

The net thickness, in mm, of the web plating of ordinary stiffeners is to be not less than:

- for $L < 120$ m: $t = 1,63 + 0,004 L^{0.5} + 4,5 s$
- for $L \geq 120$ m: $t = 3,9 k^{0.5} + s$

5.1.2 Primary supporting members

The net thickness, in mm, of plating which forms the web of side and inner side primary supporting members is to be not less than the value obtained from the following formula:

$t = 3,8 + 0,016 L^{0.5}$

5.2 Net section modulus and net shear sectional area of structural members

5.2.1 The net scantlings of single and double side structural members are not to be less than the values obtained from:

- Tab 5 for single side structure
- Tab 6 for double side structure.

5.3 Strength check in testing conditions

5.3.1 Structural members subjected to lateral pressure in testing conditions are to comply with Ch 5, Sec 1, [3].

5.4 Buckling strength check

5.4.1 Buckling strength check of side and inner side structural members is to comply with Ch 2, Sec 6.

6 Transversely framed single side

6.1 Side frames

6.1.1 Transverse frames are to be fitted at every frame.

6.1.2 Continuity

Frames are generally to be continuous when crossing primary supporting members.

Otherwise, the detail of the connection is to be examined by the Society on a case by case basis.

6.1.3 Connection with floors

The frames are to be connected to the floors in accordance with Fig 1, or in an equivalent way.

For overlapping connection as to Fig 1 sketches b and c, a fillet weld run all around has to be provided.
Table 5 : Net scantlings of single side structure

<table>
<thead>
<tr>
<th>Item</th>
<th>(w), in cm³</th>
<th>(A_{sh}), in cm²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Side frames</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• if (\ell_0 \leq \ell):</td>
<td>(w = \frac{\gamma_e \gamma_m b_p s}{m R_y} \left(6 \ell^2 + 1, 45 \lambda_{ew} \rho_{F} \ell^2\right) 10^3)</td>
<td>(A_{sh} = 68 \gamma_e \gamma_m b_p f \frac{f}{R_y} \eta \ell \ell_0)</td>
</tr>
<tr>
<td>• if (\ell_0 > \ell):</td>
<td>(w = \frac{\gamma_e \gamma_m b_p s}{m R_y} \left(\lambda_{ew} \rho_{F} \ell^2 + 1, 45 \lambda_{ew} \rho_{F} \ell^2\right) 10^3)</td>
<td>(A_{sh} = 10 \gamma_e \gamma_m b_p \frac{f}{R_y} \eta \ell \ell_0)</td>
</tr>
<tr>
<td>Side longitudinals</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(w = \frac{\gamma_e \gamma_m b_p \rho_{F}}{m R_y} S f \ell^2 10^3)</td>
<td>(A_{sh} = 10 \gamma_e \gamma_m b_p \frac{f}{R_y} S \ell \ell_0)</td>
</tr>
<tr>
<td>Side web frames and side transverses (1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• if (\ell_0 \leq \ell):</td>
<td>(w = k_1 \frac{\gamma_e \gamma_m b_p \rho_{F}}{m R_y} S f \ell^2 10^3)</td>
<td>(A_{sh} = 68 \gamma_e \gamma_m b_p f \frac{f}{R_y} S \ell \ell_0)</td>
</tr>
<tr>
<td>• if (\ell_0 > \ell):</td>
<td>(w = k_2 \frac{\gamma_e \gamma_m b_p \rho_{F}}{m R_y} S f \ell^2 10^3)</td>
<td>(A_{sh} = 10 \gamma_e \gamma_m b_p \frac{f}{R_y} S \ell \ell_0)</td>
</tr>
<tr>
<td>Side stringers (2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(w = \frac{\gamma_e \gamma_m b_p \rho_{F}}{m (R_y - \gamma_e \gamma_m \sigma_{s1})} S f \ell^2 10^3)</td>
<td>(A_{sh} = 10 \gamma_e \gamma_m b_p \frac{f}{R_y} S \ell \ell_0)</td>
</tr>
</tbody>
</table>

(1) Scantlings of web frames and side transverses at the lower end are to be the same as those of floors or bottom transverses connected to them.

(2) The span of side stringers is to be taken equal to the side transverses spacing or web frames spacing.

Note 1: The value of \(\sigma_{s1}\) is to be taken in relation with the pressure \(p\) considered.

Note 2:

- **m**: Boundary coefficient, to be taken, in general, equal to:
 - \(m = 12\) for side ordinary stiffeners
 - \(m = 8\) for side primary supporting members

- **\(\ell_1\)**: Floor span, in m
- **\(\ell_0\)**: Span parameter, in m, equal to:
 \(\ell_0 = \frac{p_{D}}{g}\)

- **\(p_{D}\)**: Total pressure, in kN/m², at the lower end of the stiffener
- **\(p_{F}\)**: Floor design lateral pressure, in kN/m², defined in Ch 5, Sec 2, Tab 2

- **\(\lambda_{ew}\)**: Coefficient to be taken equal to:
 - in transverse framing: \(\lambda_{ew} = 0,08\)
 - in combination framing: \(\lambda_{ew} = 0\)

- **\(k_1, k_2\)**:
 - For open deck vessels:
 - \(k_1 = 26\)
 - \(k_2 = 4,4\)
 - For other vessels:
 - \(k_1 = 6\)
 - \(k_2 = 1\)
6.1.4 Connection with deck structure

At the upper end of frames, connecting brackets are to be provided in compliance with [10].

On single hull open deck vessels, such brackets are to extend to the hatch coaming.

In the case of longitudinally framed deck, connecting brackets are to extend up to the deck longitudinal most at side and even to:

- the side trunk bulkhead, in the case of a trunk vessel
- the hatch coaming, in other cases.

6.1.5 Reduction on section modulus

When a side stringer is fitted at about mid-span of the frame, the required section modulus of the frame may be reduced by 20%.

6.1.6 Single bottom: connection of frames to bottom longitudinals

In the case of a longitudinally framed single bottom, the side frames are to be connected to the bottom longitudinal most at side, either directly or by means of a bracket, in accordance with Fig 2.

![Figure 2: Connection of frames to bottom longitudinals](image)

Table 6: Net scantlings of double side hull structure

<table>
<thead>
<tr>
<th>Item</th>
<th>w, in cm³</th>
<th>Aₜₜ, in cm²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Side frames</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inner side frames</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• if (\ell_0 \leq \ell):</td>
<td>(\frac{\gamma_k \gamma_m p \ell}{m R_y} S \ell^2 \sigma_{x_1}^2) & (A_{ht} = 6 \gamma_k \gamma_m p \ell \frac{S \ell^2}{R_y} \sigma_{x_1}^2)</td>
<td></td>
</tr>
<tr>
<td>• if (\ell_0 > \ell):</td>
<td>(\frac{\gamma_k \gamma_m \lambda_1 \beta_1 p S \ell^2}{m R_y} \sigma_{x_1}^2) & (A_{ht} = 10 \gamma_k \gamma_m \lambda_1 \beta_1 \frac{S \ell^2}{R_y} \sigma_{x_1}^2)</td>
<td></td>
</tr>
<tr>
<td>Side and inner side longitudinals</td>
<td>(\frac{\gamma_k \gamma_m p \ell}{m (R_y - \gamma_k \gamma_m \sigma_{x_1})} S \ell^2 \sigma_{x_1}^2) & (A_{ht} = 10 \gamma_k \gamma_m \frac{S \ell^2}{R_y} \sigma_{x_1}^2)</td>
<td></td>
</tr>
<tr>
<td>Side and inner side web frames and transverses</td>
<td>(\frac{\gamma_k \gamma_m p \ell}{m R_y} S \ell^2 \sigma_{x_1}^2) & (A_{ht} = 6 \gamma_k \gamma_m \frac{S \ell^2}{R_y} \sigma_{x_1}^2)</td>
<td></td>
</tr>
<tr>
<td>• if (\ell_0 \leq \ell):</td>
<td>(\frac{\gamma_k \gamma_m \lambda_1 \beta_1 p S \ell^2}{m R_y} \sigma_{x_1}^2) & (A_{ht} = 10 \gamma_k \gamma_m \lambda_1 \beta_1 \frac{S \ell^2}{R_y} \sigma_{x_1}^2)</td>
<td></td>
</tr>
<tr>
<td>• if (\ell_0 > \ell):</td>
<td>(\frac{\gamma_k \gamma_m p \ell}{m R_y} S \ell^2 \sigma_{x_1}^2) & (A_{ht} = 10 \gamma_k \gamma_m \frac{S \ell^2}{R_y} \sigma_{x_1}^2)</td>
<td></td>
</tr>
<tr>
<td>Plate web frames</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• if (\ell_0 \leq \ell):</td>
<td>(\frac{k_1 \gamma_k \gamma_m p \ell}{m R_y} S \ell^2 \sigma_{x_1}^2) & (A_{ht} = 6 \gamma_k \gamma_m \frac{S \ell^2}{R_y} \sigma_{x_1}^2)</td>
<td></td>
</tr>
<tr>
<td>• if (\ell_0 > \ell):</td>
<td>(\frac{k_1 \gamma_k \gamma_m \lambda_1 \beta_1 p S \ell^2}{m R_y} \sigma_{x_1}^2) & (A_{ht} = 10 \gamma_k \gamma_m \lambda_1 \beta_1 \frac{S \ell^2}{R_y} \sigma_{x_1}^2)</td>
<td></td>
</tr>
<tr>
<td>Side and inner side stringers (1)</td>
<td>(\frac{\gamma_k \gamma_m p \ell}{m (R_y - \gamma_k \gamma_m \sigma_{x_1})} S \ell^2 \sigma_{x_1}^2) & (A_{ht} = 10 \gamma_k \gamma_m \frac{S \ell^2}{R_y} \sigma_{x_1}^2)</td>
<td></td>
</tr>
</tbody>
</table>

(1) The span of side and inner side stringers is to be taken equal to the side transverses spacing or web frames spacing.

Note 1: The value of \(\sigma_{x_1} \) is to be taken in relation with the pressure \(p \) considered.

Note 2: m : Boundary coefficient, to be taken, in general, equal to:
- m = 12 for ordinary stiffeners
- m = 8 for primary supporting members

\(\ell_0 \) : Span parameter, in m

\(p_d \) : Total pressure, in kN/m², at the lower end of the stiffener

\(k_1, k_2 \): For open deck vessels:
- \(k_1 = 26 \)
- \(k_2 = 4,4 \)

For other vessels:
- \(k_1 = 6 \)
- \(k_2 = 1 \)
6.2 Side stringers

6.2.1 Arrangement
Side stringers, if fitted, are to be flanged or stiffened by a welded face plate.
The side stringers are to be connected to the frames by welds, either directly or by means of collar plates.

6.3 Web frames

6.3.1 Spacing
Web frames are to be fitted with a spacing, in m, not greater than 5 m.
For a construction on the combination system, side web frames are to be provided in way of bottom transverses.

6.3.2 End connections
Where the web frames are connected to the floors or the strong beams, web frame strength continuity is to be ensured according to Ch 2, Sec 4, [4.6].

6.3.3 End connection in the case of a trunk deck
For vessels fitted with a trunk having a breadth greater than 0.8 B, the web frames determined as laid down before are to extend up to the level of the trunk deck where, as a rule, they are to be connected to strong beams.

7 Longitudinally framed single side

7.1 Side transverses

7.1.1 Spacing
Side transverses are to be fitted:
• in general, with a spacing not greater than 8 frame spacings, nor than 4 m
• in way of hatch end beams.

7.1.2 The side transverses are generally directly welded to the shell plating.
In the case of a double bottom, the side transverses are to be bracketed to the bottom transverses.

7.1.3 Minimum shear sectional area
Taking into account the possible cuttings provided for the longitudinals, the minimum shear sectional area of a side transverse, in cm², is to be not less than the value given in Tab 5.
The Society may waive this rule subject to direct calculation of the shearing stresses.

7.2 Side longitudinals

7.2.1 Longitudinal ordinary stiffeners are generally to be continuous when crossing primary supporting members.
In the case the longitudinals are interrupted by a primary supporting member, brackets on both sides of the primary supporting member are to be fitted in perfect alignment.
The section modulus of side longitudinals located in way of the stringers of transverse bulkheads is to be increased by 20%.

8 Transversely framed double side

8.1 General

8.1.1 Adequate continuity of strength is to be ensured in way of breaks or changes in width of the double side.
In particular, scarfing of the inner side is to be ensured beyond the cargo hold region.

8.2 Side and inner side frames

8.2.1 Struts
Side frames may be connected to the inner side frames by means of struts having a sectional area not less than those of the connected frames.
Struts are generally to be connected to side and inner side frames by means of vertical brackets or by appropriate weld sections.
Where struts are fitted between side and inner side frames at mid-span, the section modulus of side frames and inner side frames may be reduced by 30%.

8.3 Side and inner side web frames

8.3.1 It is recommended to provide web frames, fitted every 3 m and in general not more than 6 frame spacings apart.
In any case, web frames are to be fitted in way of strong deck beams.

8.3.2 At their upper end, side and inner side web frames are to be connected by means of a bracket. This bracket can be a section or a flanged plate with a section modulus at least equal to that of the web frames.
At mid-span, the web frames are to be connected by means of struts, the cross sectional area of which is not to be less than those of the connected web frames.
At their lower end, the web frames are to be adequately connected to the floors.

9 Longitudinally framed double side

9.1 General

9.1.1 The requirements in [8.1.1] also apply to longitudinally framed double side.

9.2 Side and inner side longitudinals

9.2.1 Struts
Side longitudinals may be connected to the inner side longitudinals by means of struts having a sectional area not less than those of the connected longitudinals.
Struts are generally to be connected to side and inner side longitudinals by means of brackets or by appropriate weld sections.
Where struts are fitted between side and inner side longitudinals at mid-span, the section modulus of side longitudinals and inner side longitudinals may be reduced by 30%.
9.3 Side transverses

9.3.1 The requirements in [8.3] also apply to longitudinally framed double side, with side transverses instead of side web frames.

10 Frame connections

10.1 General

10.1.1 End connections
At their lower end, frames are to be connected to floors, by means of lap weld or by means of brackets.

At the upper end of frames, connecting brackets are to be provided, in compliance with [10.2]. In the case of open deck vessels, such brackets are to extend to the hatch coaming.

Brackets are normally connected to frames by lap welds. The length of overlap is to be not less than the depth of frames.

10.1.2 Brackets
The same minimum value d is required for both arm lengths of straight brackets. Straight brackets may therefore have equal sides.

A curved bracket is to be considered as the largest equal-sided bracket contained in the curved bracket.

10.2 Upper and lower brackets of frames

10.2.1 Arm length
The arm length of upper brackets, connecting frames to deck beams, and the lower brackets, connecting frames to the inner bottom or to the face plate of floors is to be not less than the value obtained, in mm, from the following formula:

\[d = \varphi \left(\frac{w + 30}{t} \right) \]

where:

- \(\varphi \): Coefficient equal to:
 - for unflanged brackets: \(\varphi = 50 \)
 - for flanged brackets: \(\varphi = 45 \)
- \(w \): Required net section modulus of the stiffener, in cm³, given in [10.2.2] and depending on the type of connection
- \(t \): Bracket net thickness, in mm, to be taken not less than the stiffener thickness.

10.2.2 Section modulus of connections
For connections of perpendicular stiffeners located in the same plane (see Fig 3) or connections of stiffeners located in perpendicular planes (see Fig 4), the required section modulus is to be taken equal to:

\[w = w_2 \quad \text{if} \quad w_2 \leq w_1 \]
\[w = w_1 \quad \text{if} \quad w_2 > w_1 \]

where \(w_1 \) and \(w_2 \) are the required net section moduli of stiffeners, as shown in Fig 3 and Fig 4.

10.2.3 All brackets for which:

\[\frac{\ell_b}{t} > 60 \]

where:

- \(\ell_b \): Length, in mm, of the free edge of the bracket
- \(t \): Bracket net thickness, in mm,

are to be flanged or stiffened by a welded face plate.

The sectional area, in cm², of the flange or the face plate is to be not less than 0.01 \(\ell_b \).

The width of the face plate, in mm, is to be not less than 10 \(t \).

Figure 3: Connections of perpendicular stiffeners in the same plane

Figure 4: Connections of stiffeners located in perpendicular planes
Section 4

Deck Scantlings

Symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>D₁</td>
<td>Unsupported stringer plate length, in m</td>
</tr>
<tr>
<td>t</td>
<td>Net thickness, in mm, of plating</td>
</tr>
<tr>
<td>s</td>
<td>Spacing, in m, of ordinary stiffeners</td>
</tr>
<tr>
<td>S</td>
<td>Spacing, in m, of primary supporting members</td>
</tr>
<tr>
<td>ℓ</td>
<td>Span, in m, of ordinary stiffeners or primary supporting members, defined in Ch 2, Sec 4, [3.2] or Ch 2, Sec 4, [4.2]</td>
</tr>
<tr>
<td>η</td>
<td>Coefficient taken equal to: (η = 1 - \frac{s}{(2.ℓ)})</td>
</tr>
<tr>
<td>p</td>
<td>Design lateral pressure, in kN/m², defined in [2]</td>
</tr>
<tr>
<td>pₑ</td>
<td>External pressure, in kN/m², defined in Ch 3, Sec 4, [2]</td>
</tr>
<tr>
<td>pᵇ</td>
<td>Ballast pressure, in kN/m², defined in Ch 3, Sec 4, [3.1]</td>
</tr>
<tr>
<td>pᶜ</td>
<td>Liquid or dry cargo pressure, in kN/m², defined from Ch 3, Sec 4, [3.1] to Ch 3, Sec 4, [3.3]</td>
</tr>
<tr>
<td>g</td>
<td>Gravitational acceleration: (g = 9.81 \text{ m/s}^2)</td>
</tr>
<tr>
<td>σₓ₁</td>
<td>Hull girder normal stress, in N/mm², defined in [3]</td>
</tr>
<tr>
<td>n</td>
<td>Navigation coefficient defined in Ch 3, Sec 1, [5.2]</td>
</tr>
<tr>
<td>zₙₑ</td>
<td>Z co-ordinate, in m, of the top of hatch coaming</td>
</tr>
<tr>
<td>βₗ, βₛ</td>
<td>Span correction coefficients defined in Ch 2, Sec 4, [5.2]</td>
</tr>
<tr>
<td>λₗ, λₛ</td>
<td>Coefficients for pressure distribution correction defined in Ch 2, Sec 4, [5.3]</td>
</tr>
<tr>
<td>w</td>
<td>Net section modulus, in cm², of ordinary stiffeners or primary supporting members</td>
</tr>
<tr>
<td>Aₙₘ</td>
<td>Net shear sectional area, in cm²</td>
</tr>
<tr>
<td>k</td>
<td>Material factor defined in Ch 2, Sec 3, [2.4] and Ch 2, Sec 3, [3.4]</td>
</tr>
<tr>
<td>Rᵧ</td>
<td>Minimum yield stress, in N/mm², of the material, to be taken equal to 235/k N/mm², unless otherwise specified</td>
</tr>
<tr>
<td>Rₑ₁₇</td>
<td>Minimum yield stress, in N/mm², of the material, defined in Ch 2, Sec 3, [2]</td>
</tr>
<tr>
<td>γₑ</td>
<td>Partial safety factor covering uncertainties regarding resistance, defined in Ch 5, Sec 1, [1.3]</td>
</tr>
<tr>
<td>γₘ</td>
<td>Partial safety factor covering uncertainties regarding material, defined in Ch 5, Sec 1, [1.3]</td>
</tr>
<tr>
<td>E</td>
<td>Young’s modulus, in N/mm², to be taken equal to: for steels in general: (E = 2.06 \times 10^5 \text{ N/mm}²) for stainless steels: (E = 1.95 \times 10^5 \text{ N/mm}²) for aluminium alloys: (E = 7.0 \times 10^4 \text{ N/mm}²) Poisson’s ratio. Unless otherwise specified, a value of 0.3 is to be taken into account</td>
</tr>
<tr>
<td>z</td>
<td>Z co-ordinate, in m, of the calculation point</td>
</tr>
<tr>
<td>Cₛ</td>
<td>Aspect ratio, equal to: (Cₛ = 1.21 \left[1 + 0.33 \left(\frac{s}{ℓ} \right)^2 \right] - 0.69 \frac{s}{ℓ} \leq 1)</td>
</tr>
<tr>
<td>Cᵣ</td>
<td>Coefficient of curvature: (Cᵣ = 1 - 0.5 \frac{s}{ℓ} \geq 0,5) where: (r) : Radius of curvature, in m</td>
</tr>
<tr>
<td>Mₑ₁₇</td>
<td>Total vertical bending moment in hogging condition, in kN.m, to be determined according to Ch 3, Sec 2, [5]</td>
</tr>
<tr>
<td>Mₑ₅₅</td>
<td>Total vertical bending moment in sagging condition, in kN.m, to be determined according to Ch 3, Sec 2, [5]</td>
</tr>
<tr>
<td>Iᵥ</td>
<td>Net moment of inertia, in cm⁴, of the hull transverse section around its horizontal neutral axis, to be calculated according to Ch 4, Sec 1</td>
</tr>
<tr>
<td>N</td>
<td>Z co-ordinate, in m, of the centre of gravity of the hull transverse section</td>
</tr>
<tr>
<td>α</td>
<td>Aspect ratio defined in Ch 5, Sec 1, [4.1.1]</td>
</tr>
<tr>
<td>b</td>
<td>Length, in m, of loaded side of the plate panel</td>
</tr>
<tr>
<td>ψ</td>
<td>Edge stress ratio defined in Ch 5, Sec 1, [4.1.2]</td>
</tr>
<tr>
<td>F₁</td>
<td>Correction factor defined in Ch 5, Sec 1, [4.2.1]</td>
</tr>
<tr>
<td>K₁</td>
<td>Factor defined in Ch 5, Sec 1, [4.3.1]</td>
</tr>
</tbody>
</table>

1 General

1.1 Application

1.1.1 The requirements of this Section apply to vessels covered by these Rules with:
- open decks, consisting of a stringer plate and a longitudinal hatch coaming (Fig 1)
- flush decks, consisting of a deck continuous over the breadth of the vessel (Fig 2 and Fig 3)
- trunk decks, differing from flush decks solely by the presence of a trunk.
1.1.2 The decks can be longitudinally or transversely framed and may be sustained by pillars, bulkheads or strong beams.

1.1.3 The requirements applicable to specific vessel notations are defined in Part D.

1.2 General arrangement

1.2.1 Breaks in the deck of the cargo zone are to be avoided. In any case, the continuity of longitudinal strength is to be ensured at such places.

To ensure continuity in the case of a break, the stringer plate of the lower deck is to:

- extend beyond the break, over a length at least equal to three times its width
- stop at a web frame of sufficient scantlings

Decks which are interrupted are to be tapered on the side by means of horizontal brackets.

1.2.2 Adequate continuity of strength is also to be ensured in way of changes in the framing system.

Details of structural arrangements are to be submitted to the Society for review/approval.

1.2.3 Deck supporting structures under deck machinery, cranes and king posts are to be adequately stiffened.

1.2.4 Where devices for vehicle lashing arrangements and/or corner fittings for containers are directly attached to deck plating, provision is to be made for the fitting of suitable additional reinforcements of the scantlings required by the load carried.

1.2.5 Stiffeners are to be fitted in way of the ends and corners of deckhouses and partial superstructures.

1.2.6 Manholes and flush deck plugs

Manholes and flush deck plugs exposed to the weather are to be fitted with steel covers of efficient construction capable of ensuring tightness. These covers are to be fitted with permanent securing device, unless they are secured with closed spaced bolts.

1.2.7 Freeing ports

Arrangements are to be made to ensure rapid evacuation of water on the decks; in particular, where the bulwarks constitute wells on the weather deck, freeing ports of adequate sectional area are to be provided.

1.2.8 Scuppers

Scuppers on the weather deck and terminating outside the hull are to be made of pipes the thickness of which, as a rule, is not to be less than that of the side plating under the sheerstrake but, however needs not exceed 8 mm.

See also Ch 6, Sec 7, [5].

1.2.9 Stringer plate openings

The openings made in the stringer plate other than scupper openings are to be wholly compensated to the satisfaction of the Society.

2 Design lateral pressures

2.1 General

2.1.1 The design lateral pressures are to be calculated independently for all applicable load cases according to Ch 3, Sec 1, [4].

2.2 Plating and structural member design lateral pressures

2.2.1 The design lateral pressures p to be used for deck plating and structural members are given in Tab 1.

<table>
<thead>
<tr>
<th>Structure</th>
<th>Lateral pressure p, in kN/m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open deck stringer plate</td>
<td>p_E</td>
</tr>
<tr>
<td>Hatch coaming</td>
<td>3</td>
</tr>
<tr>
<td>Deck plating, trunk</td>
<td>p_E</td>
</tr>
</tbody>
</table>

See also Ch 6, Sec 7, [5].
3 Hull girder normal stresses

3.1 General

3.1.1 The hull girder normal stresses are to be calculated for load cases “a” and “b” independently.

3.2 Plating subjected to lateral pressure

3.2.1 The hull girder normal stresses to be considered for the strength check of plating subjected to lateral pressure are to be determined using the formula:

\[\sigma_{x1} = 10^3 \left(\frac{M_{111}}{I_y z N} \right) \]

3.3 Structural members subjected to lateral pressure

3.3.1 The hull girder normal stresses to be considered for the yielding check of structural members subjected to lateral pressure and contributing to the longitudinal strength are given in Tab 2.

3.4 Hull girder normal compression stresses

3.4.1 The hull girder normal compression stress to be considered for the buckling check of plating and structural members which contributes to the longitudinal strength is given by the following formula:

\[\sigma_{x1} = 10^3 \left(\frac{M_{112}}{I_y z N} \right) \]

4 Buckling strength check

4.1 Plating buckling strength check

4.1.1 The plating net thicknesses of deck, stringer plate, hatch coaming (except strake above the upper most longitudi-
dinal) and trunk, in mm, are to comply with the following formulae:

\[t_1 = \frac{b}{\pi \eta} \frac{12 \gamma \gamma'' \gamma'''}{E K_i F_i} \left(1 - \nu^2 \right) 10^3 \text{ for } \sigma_b \leq \frac{R_{m11}}{2} \]

\[t_2 = \frac{b}{\pi \eta} \frac{3 R_{m11} (1 - \nu^2)}{E K_i F_i R_{m11} \gamma \gamma'' \gamma'''} 10^3 \text{ for } \sigma_b > \frac{R_{m11}}{2} \]

where \(\sigma_b \) is the maximum hull girder compression stress on the plate panel determined according to [3.4].

Buckling strength may be checked in compliance with Ch 2, Sec 6, at the Society’s discretion.

4.2 Buckling strength check of structural members

4.2.1 Buckling strength check of deck, stringer plate, hatch coaming and trunk structural members is to comply with Ch 2, Sec 6.

5 Open deck

5.1 Stringer plate

5.1.1 Width

The stringer plate is to extend between the side shell plating and the hatch coaming. In principle its width, in m, is to be not less than:

- \(b = 0.1 \ B \) for single hull vessels
- \(b = 0.6 \ m \) for double hull vessels unless otherwise specified.

The stringer plate width and arrangements are to be so that safe circulation of people is possible.

5.1.2 Stringer plate net thickness

The net thickness of the stringer plate, in mm, is not to be less than the values \(t_1 \) and \(t_2 \) obtained from Tab 3.
Table 3: Stringer plate net thickness, in mm

<table>
<thead>
<tr>
<th></th>
<th>Transverse framing</th>
<th>Longitudinal framing</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_1)</td>
<td>(2 + 0,02 L k^{0.5} + 3,6 s)</td>
<td>(2 + 0,02 L k^{0.5} + 3,6 s)</td>
</tr>
<tr>
<td>(t_2)</td>
<td>(17,2 C_s C_p \frac{\gamma_{x1} D}{\gamma_m R_y})</td>
<td>(14,9 C_s C_p \frac{\gamma_{x1} D}{\gamma_m R_y})</td>
</tr>
</tbody>
</table>

Note 1:

\[\lambda_s = \sqrt{\left(1 - 0,95 \left(\frac{\sigma_{x1}}{R_y} \right) \right)^2 - 0,225 \gamma_m} \]

\[\lambda_{x1} = 1 - 0,89 \gamma_m \frac{R_y}{\gamma_m} \]

5.1.3 Strength check in testing condition
Plating subjected to lateral pressure in testing conditions are to comply with Ch 5, Sec 1, [3].

5.1.4 Buckling strength check
The buckling strength is to be checked in compliance with [4.1.1].

5.1.5 Stringer plate longitudinal stiffeners
The scantling of stringer plate longitudinal stiffeners are to be obtained from Tab 7.

5.1.6 Stringer angle
If a stringer angle is provided, its thickness is to be at least equal to that of the side shell plating plus 1 mm, being not less than that of the stringer plate. This stringer angle is to be continuous on all the hold length.

5.1.7 In vessels having range of navigation \(\text{IN}(0,6 \leq x \leq 2) \), the Society may require transverse deck plating strips efficiently strengthened and joining the stringer plates of both sides to be fitted.

5.2 Sheerstrake

5.2.1 General
The sheerstrake may be either an inserted side strake welded to the stringer plate or a doubling plate.

5.2.2 Net thickness
The sheerstrake net thickness is not to be less than that of the stringer plate nor than that of the side shell plating.

In addition, this thickness is not to be less than the minimum value, in mm, obtained from following formula:

\[t_1 = 3,6 + 0,11 L k^{0.5} + 3,6 s \]

Where a doubling plate is provided instead of an inserted side strake, its thickness, in mm, is not to be less than:

\[t_1 = 2,6 + 0,076 L k^{0.5} + 3,6 s \]

5.2.3 Width
Where the sheerstrake thickness is greater than that of the adjacent side shell plating, the sheerstrake is to extend over a height \(b \), measured from the deckline, in compliance with the following:

\[0,08 D \leq b \leq 0,15 D \]

5.3 Hatch coaming

5.3.1 Height
The height of the hatch coaming above the deck, in m, is not to be less than the value obtained from the following formula, where \(b \) is the stringer plate width defined in [5.1.1]:

\[h_c = 0,75 b \]

Furthermore, the height of the hatch coaming above the deck is to comply with the following:

\[z_{sc} \geq T + h_2 + 0,15 \]

5.3.2 Expanded depth
The expanded depth of the underdeck portion of the hatch coaming is to be not less than:

- 0,15 m for single hull vessels
- 0,25 \(b \) for double hull vessels, where \(b \) is the stringer plate width, in m.

5.3.3 Stiffening arrangements
The hatch coaming is to be fitted with a longitudinal stiffening member close to the coaming upper edge. Intermediate longitudinals may be required, depending upon the hatch coaming height, to withstand the hull girder loads.

The hatch coaming longitudinal stiffeners are to be protected against tripping and buckling by means of stays fitted above web frames and transverse bulkheads.

The spacing of the stays is not to be greater than that required for web frames or side transverses in accordance with Ch 5, Sec 3, [6.3] or Ch 5, Sec 3, [7.1].

Strength continuity of the stays is to be ensured below the deck, as far as practicable, in way of web frames and bulkheads.

Stiffeners are to be provided under the deck where necessary, in way of the intermediate stays and of the transverse boundary stays.

The net moment of inertia (\(I_{eS} \)) in way of the lower end of the stays with attached plating, in cm\(^4\), shall be in compliance with the following formula:

\[I_{esc} = 13 \left(\frac{h_c}{7} \right) I_e \]

where:

\[\ell \] : Span of hatch coaming longitudinal stiffener, in m

\[I_e \] : Net moment of inertia, in cm\(^4\), of the upper hatch coaming longitudinal stiffener with attached plating.

5.3.4 Plating scantling
The net thickness of the hatch coaming plating is to be maintained over the length of the hold and is not to be less than \(t_1 \) and \(t_2 \) given in Tab 4.

The buckling strength is to be checked in compliance with [4.1.1].

When the height of the upper most strake (above the hatch coaming upper most longitudinal stiffener) exceeds 8 times the hatch coaming net thickness, the buckling strength is to be checked in compliance with Ch 2, Sec 6, using load case 3 defined in Ch 2, Sec 6, [2.1.3].
Table 4 : Hatch coaming plate net thickness, in mm

<table>
<thead>
<tr>
<th>Transverse framing</th>
<th>Longitudinal framing</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t_1 = 1.6 + 0.04 \cdot L \cdot k_0^{5.5} + 3.6 \cdot s$</td>
<td>$t_2 = 14.9C_C_C_s \frac{\sqrt{\lambda_y \cdot \rho_s}}{\lambda_2 \cdot R_y}$</td>
</tr>
<tr>
<td>$t_2 = 17.2C_C_s \frac{\sqrt{\lambda_y \cdot \rho_s}}{\lambda_2 \cdot R_y}$</td>
<td>$t_3 = 14.9C_C_C_s \frac{\sqrt{\lambda_y \cdot \rho_s}}{\lambda_2 \cdot R_y}$</td>
</tr>
</tbody>
</table>

Note 1:

$\lambda_y = \sqrt{1 - 0.95 \left(\frac{\sigma_{y, s}}{\sigma_{y, R}} \right)^2 - 0.225 \gamma_p \sigma_{y, t}}$

$\lambda_t = 1 - 0.89 \gamma_p \sigma_{y, t}$

p : Lateral pressure to be taken equal to 3 kN/m².

5.4 Transverse strength of topside structure for single hull vessels

5.4.1 General

The topside structure is to be considered as a girder consisting of the stringer plate, the sheerstrake and the hatch coaming, with scantlings according to [5.1], [5.2] and [5.3].

The distributed transverse load, in kN/m, acting on the topside structure is to be taken not less than:

- if $\ell_0 \leq \ell$:

 $q = 0.25 (6 \cdot \ell \cdot \ell_0 + \lambda_{sw} p_t \ell_3)$

- if $\ell_0 > \ell$:

 $q = 0.25 (\lambda_{sw} p \ell + \lambda_{sw} p_t \ell_3)$

where:

ℓ_0 : Span parameter, in m, equal to:

$\ell_0 = \frac{pd}{g}$

p_d : Total pressure, in kN/m², at the lower end of the stiffener

ℓ : Side frame span, in m

p_t : Side frame pressure, in kN/m², defined in Ch 5, Sec 3, Tab 1

p_f : Floor design lateral pressure, in kN/m², defined in Ch 5, Sec 2, Tab 2

ℓ_f : Span of floor connected to the side frame, in m

λ_{sw} : $\lambda_{sw} = 0.08$ in transverse framing system

$\lambda_{sw} = 0$ in combination framing system.

The actual section modulus of the topside structure, in cm³, may be determined by means of the following formula:

$w = \frac{A_n^t + \frac{t^2}{60} \left(1 + \frac{A_n - A}{A_n + 0.05t} \right)}{A_n}$

where:

t : Thickness of stringer plate, in mm

b : Width of stringer plate in, cm

$A = \min (A_1 ; A_2)$

A_1 : Sheerstrake sectional area, in cm², including a part of the shell plating extending on 0.15 D

A_2 : Hatch coaming sectional area, in cm², including longitudinal stiffeners. The width, in m, of the hatch coaming to be considered is:

$h = h_s + \min (0.75 h_c ; 1)$

h_s : Expanded depth of the underdeck portion of the hatch coaming, in m, defined in [5.3.2]

h_c : Hatch coaming height above deck, in m.

5.4.2 Unsupported stringer plate length

The unsupported stringer plate length D_1, in m, is to be taken as the distance between transverse efficient supports (transverse bulkheads, transverse partial bulkheads, reinforced rings).

5.4.3 Topside structure strength check

The minimum required net section modulus, in cm³, of the topside structure is to be obtained using the formula:

$Z_{TS} = \frac{q}{m k_1 (200 \cdot \rho / \sigma_1)^{1.10}} D_1^{1.10}$

where:

q : Distributed transverse load, in kN/m, defined in [5.4.1]

D_1 : Length not to be taken greater than 33.3 m

k_1 : Coefficient to be taken equal to:

$k_1 = 1 + 0.25 \left(\frac{D_1}{s} - 1 \right) \frac{w}{100D}$

w : Side frame net section modulus, in cm³

σ_1 : Maximum hull girder normal stress, in N/mm², in the stringer plate.

m : Boundary coefficient, to be taken, in general, equal to:

- $m = 12$ for ordinary stiffeners

- $m = 8$ for primary supporting members

5.4.4 Strong deck box beams

Where the stringer plate is supported by reinforced rings, the net section modulus of the strong deck box beams is to be not less than:

$w = \frac{\gamma_s \gamma_p \cdot p}{m (R_s - \gamma_p \sigma_A)} D_1 \cdot \ell^2 \cdot 10^3$

where:

p : Deck design load, in kN/m², to be defined by the Designer. In any case, p is not to be taken less than the value derived from formula given under [2.2]

σ_A : Deck box beam axial stress, in N/mm²:

$\sigma_A = \frac{100D_1}{A}$

A : Deck box beam sectional area, in cm²

q : Distributed transverse load, in kN/m, defined in [5.4.1]

m : Boundary coefficient, defined in [5.4.3]
6 Flush deck

6.1 Stringer plate

6.1.1 Net thickness
The stringer plate net thickness, in mm, is to be determined in accordance with Tab 5.
The stringer plate thickness is to be not less than that of the adjacent deck plating.

6.1.2 Width
Where the stringer plate has a thickness greater than that of the deck plating, its width is to be not less than 50 times its thickness.

6.1.3 Stringer angle
Where a stringer angle is fitted, its thickness is not to be less than that of the side shell plating increased by 1 mm nor, as a rule, when the vessel is built on the transverse system, than that of the stringer plate.

6.1.4 If the stringer plate is rounded at side, it is to extend on the side shell plating over a length at least equal to 25 times its thickness, for vessels built on the transverse system.

6.2 Deck plating

6.2.1 Plating net thickness
The deck plating net thickness, in mm, is not to be less than the values \(t_1 \) and \(t_2 \) given in Tab 5.

Table 5 : Deck plating and stringer plate net thicknesses, in mm

<table>
<thead>
<tr>
<th>Transverse framing</th>
<th>Longitudinal framing</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_1 = 0.9 + 0.034 L k^{0.5} + 3.6) s</td>
<td>(t_1 = 0.9 + 0.034 L k^{0.5} + 3.6) s</td>
</tr>
<tr>
<td>(t_2 = 17.2 C_s C_e \sqrt{\frac{12\gamma q}{\lambda_s R_y}})</td>
<td>(t_2 = 14.9 C_s C_e \sqrt{\frac{12\gamma q}{\lambda_s R_y}})</td>
</tr>
</tbody>
</table>

Note 1:
\[
\lambda_s = \sqrt{1 - 0.95 \left(\frac{\sigma_{x1}}{R_y} \right)^2 - 0.225 \gamma m \frac{\sigma_{x1}}{R_y}}
\]
\[
\lambda_{x1} = 1 - 0.89 \gamma m \frac{\sigma_{x1}}{R_y}
\]

6.2.2 Strength check in testing condition
Plating subjected to lateral pressure in testing condition is to comply with Ch 5, Sec 1, [3].

6.2.3 Buckling strength check
The buckling strength is to be checked in compliance with [4.1.1].

6.3 Sheerstrake

6.3.1 General
The sheerstrake may be either an inserted side strake welded to the stringer plate or a doubling plate.
See also Ch 2, Sec 4, [2.1.2].

6.3.2 Net thickness
The sheerstrake net thickness is not to be less than that of the stringer plate nor that of the side shell plating.
In addition, this thickness is not to be less than the minimum value, in mm, obtained from following formula:
\[
t = 3.6 + 0.11 L k^{0.5} + 3.6 \ s
\]
Where a doubling plate is provided instead of an inserted side strake, its thickness, in mm, is not to be less than:
\[
t = 2.6 + 0.076 L k^{0.5} + 3.6 \ s
\]

6.3.3 Rounded sheerstrake
In the case of a rounded sheerstrake connecting the side shell to the deck, the radius of curvature of the strake, in mm, is not to be less than 5 times its thickness.

6.3.4 Width
Where the sheerstrake thickness is greater than that of the adjacent side shell plating, the sheerstrake is to extend over a height \(b \), measured from the deckline, in compliance with the following relation:
\[
0.08 D \leq b \leq 0.15 D
\]
Where a sheerstrake does not rise above deck, a footguard angle or flat is to be fitted at about 100 mm from the side shell.
The height of the sheerstrake / footguard above the deck is to be at least 50 mm.

7 Trunk deck

7.1 General

7.1.1 The top structure of a trunk deck vessel is made of:

- sheerstrake
- stringer plate
- trunk, made of longitudinal vertical plating strips and the upper deck (trunk top) to which they are connected.

7.2 Sheerstrake

7.2.1 General
The sheerstrake may be either an inserted side strake welded to the stringer plate or a doubling plate.
See also Ch 2, Sec 4, [2.1.2].

7.2.2 Net thickness
The sheerstrake net thickness is not to be less than that of the stringer plate nor that of the side shell plating.
Moreover, this thickness is not to be less than the minimum value, in mm, obtained from following formula:
\[
t_1 = 3.6 + 0.11 L k^{0.5} + 3.6 \ s
\]
Where a doubling plate is provided instead of an inserted side strake, its thickness, in mm, is not to be less than:
\[
t_1 = 2.6 + 0.076 L k^{0.5} + 3.6 \ s
\]

7.2.3 Rounded sheerstrake
In the case of a rounded sheerstrake connecting the side shell to the deck, the radius of curvature of the strake, in mm, is not to be less than 5 times its thickness.
7.2.4 Width
Where the sheerstrake is thicker than the adjacent side shell plating, the sheerstrake is to extend over a height \(b_3 \), measured from the deckline, in compliance with the following relation:

\[
0.08 \, D \leq b_3 \leq 0.15 \, D
\]

Where a sheerstrake does not rise above deck, a footguard angle or flat is to be fitted at about 100 mm from the side shell.

The height of the sheerstrake/footguard above the deck is to be at least 50 mm.

7.3 Stringer plate

7.3.1 Net thickness
The stringer plate net thickness, in mm, is to be determined in accordance with Tab 6.

7.3.2 Width
The stringer plate is to extend between the side shell and the trunk. Its width and arrangements are to be so that safe circulation of people is possible.

7.3.3 Stringer angle
Where a stringer angle is fitted, its thickness is not to be less than that of the side shell plating increased by 1 mm nor, as a rule, when the vessel is built on the transverse system, than that of the stringer plate.

7.3.4 If the stringer plate is rounded at side, it is to extend on the side shell plating over a length at least equal to 25 times its thickness, for vessels built on the transverse system.

7.4 Trunk

7.4.1 Trunk plating net thickness
The plating net thicknesses of the trunk longitudinal bulkhead and trunk deck are not to be less than \(t_1 \) and \(t_2 \) given in Tab 6.

Plating subjected to lateral pressure in testing condition is to comply with Ch 5, Sec 1, [3].

The buckling strength is to be checked in compliance with [4.1.1].

8 Top structure supporting members

8.1 General

8.1.1 The top structure supporting members consist of ordinary stiffeners (beams or longitudinals), longitudinally or transversely arranged, supported by primary supporting members which may be sustained by pillars.

8.2 Minimum net thickness of web plating

8.2.1 Ordinary stiffeners
The net thickness, in mm, of the web plating of ordinary stiffeners is not to be less than:

\[
\begin{align*}
\text{for } L < 120 \, \text{m} & : t = 1.63 + 0.004 \, L^{0.5} + 4.5 \, s \\
\text{for } L \geq 120 \, \text{m} & : t = 3.9 \, k^{0.5} + s
\end{align*}
\]

8.2.2 Primary supporting members
The net thickness, in mm, of plating which forms the web of primary supporting members is to be not less than the value obtained from the following formula:

\[
t = 3.8 + 0.016 \, L \, k^{0.5}
\]

8.3 Net scantlings of structural members

8.3.1 Net section modulus and net shear sectional area
The net section modulus \(w \), in cm\(^3\), and the net shear sectional area \(A_{Sh} \), in cm\(^2\), of top structure structural members in service conditions are to be obtained from Tab 7.

8.3.2 Strength check in testing conditions
The net section modulus \(w \), in cm\(^3\), and the net shear sectional area \(A_{Sh} \), in cm\(^2\), of top structure structural members being part of compartments or structures intended to contain liquids are to comply with Ch 5, Sec 1, [3].

8.3.3 Buckling strength check
The buckling strength of top structure supporting members is to be checked in compliance with [4.2.1].

8.4 Arrangement of hatch supporting structure

8.4.1 Hatch side girders and hatch end beams of reinforced scantlings are to be fitted in way of cargo hold openings.

In general, hatched end beams and deck transverses are to be in line with bottom and side transverse structures, so as to form a reinforced ring.

8.4.2 Clear of openings, adequate continuity of strength of longitudinal hatch coamings is to be ensured by underdeck girders.

8.4.3 The details of connection of deck transverses to longitudinal girders and web frames are to be submitted to the Society.

Table 6 : Plating net thickness, in mm

<table>
<thead>
<tr>
<th>Transverse framing</th>
<th>Longitudinal framing</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_1 = 0.9 + 0.034L^{0.5} + 3.6s)</td>
<td>(t_1 = 0.57 + 0.031L^{0.5} + 3.6s)</td>
</tr>
<tr>
<td>(t_2 = 17.2C_sC_s\frac{YmD}{\lambda_iR_y})</td>
<td>(t_2 = 14.9C_sC_s\frac{YmD}{\lambda_iR_y})</td>
</tr>
</tbody>
</table>

Note 1:

\[
\lambda_i = \sqrt{1-0.95\frac{\sigma_{sl}}{\gamma_m R_y}} - 0.225\frac{\sigma_{sl}}{\gamma_m R_y}
\]

\[
\lambda_i = 1-0.89\frac{\sigma_{sl}}{\gamma_m R_y}
\]
Table 7: Net scantlings of top structure supporting members

<table>
<thead>
<tr>
<th>Item</th>
<th>w, in cm3</th>
<th>A_{sw}, in cm2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deck beams</td>
<td>$w = \frac{m R_y \beta \delta}{m R_y} s^2 10^3$</td>
<td>$A_{sw} = 10 \gamma m R_y P R_y S_{r1} \delta$</td>
</tr>
<tr>
<td>Trunk vertical stiffeners (1)</td>
<td>$w = \frac{m R_y \beta \delta}{m R_y} s^2 10^3$</td>
<td>$A_{sw} = 10 \gamma m R_y P R_y S_{r1} \delta$</td>
</tr>
<tr>
<td>Deck longitudinals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stringer plate longitudinals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trunk longitudinals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hatch coaming longitudinals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deck transverses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reinforced deck beams</td>
<td>$w = \frac{m R_y \beta \delta}{m R_y} s^2 10^3$</td>
<td>$A_{sw} = 10 \gamma m R_y P R_y S_{r1} \delta$</td>
</tr>
<tr>
<td>Deck girders</td>
<td>$w = \frac{m R_y \beta \delta}{m R_y} s^2 10^3$</td>
<td>$A_{sw} = 10 \gamma m R_y P R_y S_{r1} \delta$</td>
</tr>
</tbody>
</table>

(1) Scantlings of trunk vertical stiffeners are not to be less than those of deck beams connected to them
(2) Scantlings of deck web frames are not to be less than those of deck transverses connected to them.

Note 1:
m : Boundary coefficient, to be taken, in general, equal to:
- $m = 12$ for ordinary stiffeners
- $m = 8$ for primary supporting members.

8.5 Coaming of separate hatchways

8.5.1 Height
The coaming upper edge is not to be less than 300 mm above the deck.

Furthermore, the height of the hatch coaming, h_c, above the deck is to comply with the following:

$$z_c \geq T + h_2 + 0.15$$

8.5.2 Net thickness
The net thickness of the coaming boundaries is not to be less than:

$$t = 0.25 a + 3 \leq 5 \text{ mm},$$

where a is the greater dimension of the hatchway, in m.

The Society reserves the right to increase the scantlings required here before where range of navigation $\text{IN}(x \geq 1, 2)$ is assigned, or to reduce them where range of navigation $\text{IN}(0)$ is assigned.

8.5.3 Stiffening
The coaming boundaries are to be stiffened with an horizontal stiffening member close to the coaming upper edge. In the case the coaming is higher than 750 mm, a second stiffener is to be fitted at about 0.75 times the hatch coaming height.

The coaming boundaries are to be stiffened with stays, the ends of which are to be connected to the deck and to the upper horizontal stiffeners.

Where necessary, stiffeners are to be provided under deck in way of the stays.

8.5.4 Strength continuity
Arrangements are to be made to ensure strength continuity of the top structure, at the end of large-size hatchways, mainly by extending the deck girders along the hatchway, beyond the hatchways, up to the end bulkhead or over two frame spacings, whichever is greater.

9 Transversely framed deck

9.1 Deck beams

9.1.1 General
In general, deck beams or deck half-beams are to be fitted at each frame.

9.1.2 Open deck vessels
In the hatchway region, it is recommended to replace the half-beams by brackets, extending to the hatch coaming, as shown on Fig 1.

9.2 Reinforced deck beams

9.2.1 Reinforced deck beams are to be fitted in way of side webs.

9.3 Deck girders

9.3.1 Where deck beams are fitted in a hatched deck, they are to be effectively supported by longitudinal girders located in way of hatch side girders to which they are to be connected by brackets and/or clips.

9.3.2 Deck girders subjected to concentrated loads are to be adequately strengthened.
9.3.3 Deck girders are to be fitted with tripping stiffeners or brackets:
- spaced not more than 20 times the girder faceplate width
- in way of concentrated loads and pillars.

9.3.4 Where a deck girder comprises several spans and its scantlings vary from one span to another, the connection of two different parts is to be effected gradually by strengthening the weaker part over a length which, as a rule, is to be equal to 25% of its length.

9.3.5 The connection of girders to the supports is to ensure correct stress transmission. In particular, connection to the bulkheads is to be obtained by means of flanged brackets having a depth equal to twice that of the deck girder and the thickness of the girder, or by any equivalent method.

10 Longitudinally framed deck

10.1 Deck longitudinals

10.1.1 Deck longitudinals are to be continuous, as far as practicable, in way of deck transverses and transverse bulkheads.

Other arrangements may be considered, provided adequate continuity of longitudinal strength is ensured.

The section modulus of deck longitudinals located in way of the web frames of transverse bulkheads is to be increased by 20%.

10.1.2 Frame brackets, in vessels with transversely framed sides, are generally to have their horizontal arm extended to the adjacent longitudinal ordinary stiffener.

10.2 Deck transverses

10.2.1 In general, the spacing of deck transverses is not to exceed 8 frame spacings or 4 m, whichever is the lesser.

10.2.2 Where applicable, deck transverses of reinforced scantlings are to be aligned with bottom transverses.

10.2.3 Deck and trunk deck transverses

The section modulus of transverse parts in way of the stringer plate and of the trunk sides is not to be less than the rule value obtained by determining them as deck transverses or as side shell transverses, whichever is greater.

11 Pillars

11.1 General

11.1.1 Pillars or other supporting structures are generally to be fitted under heavy concentrated loads.

11.1.2 Structural members at heads and heels of pillars as well as substructures are to be constructed according to the forces they are subjected to, taking into account the requirement of Ch 8, Sec 1, [3.7].

Where pillars are affected by tension loads doublings are not permitted.

11.1.3 Pillars in tanks are to be checked for tension. Tubular pillars are not permitted in tanks for flammable liquids.

11.1.4 Pillars are to be fitted, as far as practicable, in the same vertical line.

11.2 Buckling check

11.2.1 Compression axial load

Where pillars are in line, the compression axial load in a pillar is obtained, in kN, from the following formula:

\[F_A = A_0 (p_s + \gamma_s p_w) + \sum_{i=1}^{N} r_i (Q_{i,s} + \gamma_{w}, Q_{i,w}) \]

where:
- \(A_0 \) : Area, in m², of the portion of the deck or platform supported by the pillar considered
- \(r_i \) : Coefficient which depends on the relative position of each pillar above the one considered, to be taken equal to:
 - \(r_i = 0.9 \) for the pillar immediately above that considered (\(i = 1 \))
 - \(r_i = 0.9^i \) for the \(i^{th} \) pillar of the line above the pillar considered, to be taken not less than 0.478
- \(Q_{i,s}, Q_{i,w} \) : Still water and wave loads, respectively, in kN, from the \(i^{th} \) pillar of the line above the pillar considered
- \(p_s \) : Still water pressure, in kN/m², on the deck supported by the pillar, see Ch 3, Sec 4
- \(p_w \) : Wave pressure, in kN/m², on the deck supported by the pillar, see Ch 3, Sec 4
- \(\gamma_{w} \) : Partial safety factor covering uncertainties regarding wave loads:
 - \(\gamma_{w} = 1.0 \) for \(H = 0.6 \)
 - \(\gamma_{w} = 1.2 \) for \(H > 0.6 \)

11.2.2 Critical column buckling stress of pillars

The critical column buckling stress of pillars is to be obtained, in N/mm², from the following formulae:

\[\sigma_{cB} = \sigma_{eB} \]

\[\sigma_{eB} = R_{ml}\left(1 - \frac{R_{mi}}{4\sigma_{eB}}\right) \text{ for } \sigma_{eB} > \frac{R_{mi}}{2} \]

where:
- \(\sigma_{eB} \) : Euler column buckling stress, to be obtained, in N/mm², from the following formula:
 \[\sigma_{eB} = \pi^2 E \frac{l}{A(\ell)^2} 10^{-4} \]
- \(l \) : Minimum net moment of inertia, in cm², of the pillar
- \(A \) : Net cross-sectional area, in cm², of the pillar
- \(\ell \) : Span, in m, of the pillar
- \(f \) : Coefficient, to be obtained from Tab 8.
11.2.3 Critical local buckling stress of built-up pillars
The critical local buckling stress of built-up pillars is to be obtained, in N/mm², from the following formulae:

\[\sigma_{e3} = \sigma_{e3} \quad \text{for} \quad \sigma_{e3} \leq \frac{R_{w}}{2} \]

\[\sigma_{e4} = R_{w} \left(1 - \frac{R_{w}}{4 \sigma_{e4}} \right) \quad \text{for} \quad \sigma_{e3} > \frac{R_{w}}{2} \]

where:

- \(\sigma_{e3} \): Euler local buckling stress, to be taken equal to the lesser of the values obtained, in N/mm², from the following formulae:
 - \(\sigma_{e3} = 78 \left(\frac{h_{w}}{t_{w}} \right)^{2} \times 10^{4} \)
 - \(\sigma_{e3} = 32 \left(\frac{b}{t_{w}} \right)^{2} \times 10^{4} \)

- \(h_{w} \): Web height of built-up section, in mm
- \(t_{w} \): Net web thickness of built-up section, in mm
- \(b_{F} \): Face plate width of built-up section, in mm
- \(t_{F} \): Net face plate thickness of built-up section, in mm.

11.2.4 Critical local buckling stress of pillars having hollow rectangular section
The critical local buckling stress of pillars having hollow rectangular section is to be obtained, in N/mm², from the following formulae:

\[\sigma_{e4} = \sigma_{e4} \quad \text{for} \quad \sigma_{e4} \leq \frac{R_{w}}{2} \]

\[\sigma_{e4} = R_{w} \left(1 - \frac{R_{w}}{4 \sigma_{e4}} \right) \quad \text{for} \quad \sigma_{e3} > \frac{R_{w}}{2} \]

where:

- \(\sigma_{e4} \): Euler local buckling stress, to be taken equal to the lesser of the values obtained, in N/mm², from the following formulae:
 - \(\sigma_{e4} = 78 \left(\frac{b}{h} \right)^{2} \times 10^{4} \)
 - \(\sigma_{e4} = 78 \left(\frac{t_{1}}{h} \right)^{2} \times 10^{4} \)

- \(b \): Length, in mm, of the shorter side of the section
- \(t_{2} \): Net web thickness, in mm, of the shorter side of the section
- \(h \): Length, in mm, of the longer side of the section
- \(t_{1} \): Net web thickness, in mm, of the longer side of the section.

11.2.5 Checking criteria
The net scantlings of the pillar loaded by the compression axial stress \(F_{A} \) defined in [11.2.1] are to comply with the formulae in Tab 9.

11.3 Connections

11.3.1 Pillars are to be attached at their heads and heels by continuous welding.

11.3.2 Pillars working under pressure may be fitted by welds only, in the case the thickness of the attached plating is at least equal to the thickness of the pillar. Where the thickness of the attached plating is smaller than the thickness of the pillar, a doubling plate is to be fitted.

11.3.3 Heads and heels of pillars which may also work under tension (such as those in tanks) are to be connected to the surrounding structure by means of brackets or insert plates so that the loads are well distributed.

11.3.4 Pillars are to be connected to the inner bottom, where fitted, at the intersection of girders and floors. Where pillars connected to the inner bottom are not located in way of intersections of floors and girders, partial floors or girders or equivalent structures suitable to support the pillars are to be arranged.

11.3.5 Manholes and lightening holes may not be cut in the girders and floors below the heels of pillars.

11.3.6 Where side pillars are not fitted in way of hatch ends, vertical stiffeners of bulkheads supporting hatch side girders or hatch end beams are to be bracketed at their ends.

12 Hatch supporting structures

12.1 General

12.1.1 Hatch side girders and hatch end beams of reinforced scantlings are to be fitted in way of cargo hold openings. In general, hatched end beams and deck transverses are to be in line with bottom and side transverse structures, so as to form a reinforced ring.

12.1.2 Clear of openings, adequate continuity of strength of longitudinal hatch coamings is to be ensured by under-deck girders.

12.1.3 The details of connection of deck transverses to longitudinal girders and web frames are to be submitted to the Society for approval.
Table 9: Buckling check of pillars subject to compression axial load

<table>
<thead>
<tr>
<th>Pillar cross-section</th>
<th>Column buckling check</th>
<th>Local buckling check</th>
<th>Geometric condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Built-up</td>
<td>(\frac{\sigma_{cb}}{1.02\gamma_R} \geq \frac{F_A}{A})</td>
<td>(\frac{\sigma_{cl}}{1.02\gamma_R} \geq \frac{F_A}{A})</td>
<td>(\frac{b_f}{t_f} \leq 40)</td>
</tr>
<tr>
<td>Hollow tubular</td>
<td>(\frac{\sigma_{cb}}{1.02\gamma_R} \geq \frac{F_A}{A})</td>
<td>Not required</td>
<td>(\frac{d}{t} \leq 55) (t \geq 5.5 \text{ mm})</td>
</tr>
<tr>
<td>Hollow rectangular</td>
<td>(\frac{\sigma_{cb}}{1.02\gamma_R} \geq \frac{F_A}{A})</td>
<td>(\frac{\sigma_{cl}}{1.02\gamma_R} \geq \frac{F_A}{A})</td>
<td>(\frac{b}{t_2} \leq 55) (\frac{h}{t_1} \leq 55) (t_1 \geq 5.5 \text{ mm}) (t_2 \geq 5.5 \text{ mm})</td>
</tr>
</tbody>
</table>

Note 1:
- \(\sigma_{cb} \): Critical column buckling stress, in N/mm², defined in [11.2.2]
- \(\sigma_{cl} \): Critical local buckling stress, in N/mm², defined in [11.2.3] for built-up section or in [11.2.4] for hollow rectangular section
- \(\gamma_R \): Resistance partial safety factor, equal to:
 - 1.15 for column buckling
 - 1.05 for local buckling
- \(F_A \): Compression axial load in the pillar, in kN, defined in [11.2.1]
- \(A \): Net sectional area, in cm², of the pillar.
SECTION 5 BULKHEAD SCANTLINGS

Symbols

- \(t \): Net thickness, in mm, of plating
- \(s \): Spacing, in m, of ordinary stiffeners
- \(S \): Spacing, in m, of primary supporting members
- \(\ell \): Span, in m, of ordinary stiffeners or primary supporting members
- \(\eta \): Coefficient taken equal to:
 \[
 \eta = 1 - \frac{s}{2 \ell}
 \]
- \(p \): Design lateral pressure, in kN/m\(^2\), defined in [2]
- \(p_B \): Ballast pressure, in kN/m\(^2\), defined in Ch 3, Sec 4, [3.1]
- \(p_C \): Liquid or dry cargo pressure, in kN/m\(^2\), defined from Ch 3, Sec 4, [3.1] to Ch 3, Sec 4, [3.3]
- \(p_{FL} \): Flooding pressure, in kN/m\(^2\), defined in Ch 3, Sec 4, [4]
- \(\sigma_{x1} \): Hull girder normal stress, in N/mm\(^2\), defined in [3]
- \(\beta_b, \beta_s \): Span correction coefficients defined in Ch 2, Sec 4, [5.2]
- \(\lambda_b, \lambda_s \): Coefficients for pressure distribution correction defined in Ch 2, Sec 4, [5.3]
- \(w \): Net section modulus, in cm\(^3\), of ordinary stiffeners or primary supporting members
- \(A_{sb} \): Net shear sectional area, in cm\(^2\)
- \(k \): Material factor defined in Ch 2, Sec 3, [2.4] and Ch 2, Sec 3, [3.4]
- \(R_y \): Minimum yield stress, in N/mm\(^2\), of the material, to be taken equal to 235/k N/mm\(^2\), unless otherwise specified
- \(R_{yst} \): Minimum yield stress, in N/mm\(^2\), of the material, defined in Ch 2, Sec 2, [2]
- \(\gamma_k \): Partial safety factor covering uncertainties regarding resistance, defined in Ch 5, Sec 1, [1.3]
- \(\gamma_m \): Partial safety factor covering uncertainties regarding material, defined in Ch 5, Sec 1, [1.3]
- \(E \): Young’s modulus, in N/mm\(^2\), to be taken equal to:
 - for steels in general:
 \[
 E = 2,06 \times 10^5 \text{ N/mm}^2
 \]
 - for stainless steels:
 \[
 E = 1,95 \times 10^5 \text{ N/mm}^2
 \]
 - for aluminium alloys:
 \[
 E = 7,0 \times 10^4 \text{ N/mm}^2
 \]
- \(v \): Poisson’s ratio. Unless otherwise specified, a value of 0.3 is to be taken into account
- \(C_s \): Aspect ratio, equal to:
 \[
 C_s = 1,21 \left(\frac{0,33}{\ell} \right)^2 - 0,69 \frac{S}{\ell} \leq 1
 \]
- \(C_r \): Coefficient of curvature:
 \[
 C_r = 1 - 0,5 \frac{S}{r} \geq 0,5
 \]
 where:
- \(r \): Radius of curvature, in m
- \(M_{TH} \): Total vertical bending moment in hogging condition, in kN.m, to be determined according to Ch 3, Sec 2, [5]
- \(M_{TS} \): Total vertical bending moment in sagging condition, in kN.m, to be determined according to Ch 3, Sec 2, [5]
- \(I_y \): Net moment of inertia, in cm\(^4\), of the hull transverse section around its horizontal neutral axis, to be calculated according to Ch 4, Sec 1
- \(N \): Z co-ordinate, in m, of the centre of gravity of the hull transverse section
- \(\alpha \): Aspect ratio defined in Ch 5, Sec 1, [4.1.1]
- \(b \): Length, in m, of loaded side of the plate panel
- \(\psi \): Edge stress ratio defined in Ch 5, Sec 1, [4.1.2]
- \(F_1 \): Correction factor defined in Ch 5, Sec 1, [4.2.1]
- \(K_3 \): Factor defined in Ch 5, Sec 1, [4.3.1]

1 General

1.1 Application

1.1.1 The requirements of this Section apply to transverse or longitudinal bulkhead structures which may be plane or corrugated.

In addition to the rules of this Section, bulkheads are to comply with specific requirements stated under Part D.
1.2 General arrangement

1.2.1 Bulkheads may be horizontally or vertically stiffened. Horizontally framed bulkheads consist of horizontal ordinary stiffeners supported by vertical primary supporting members. Vertically framed bulkheads consist of vertical ordinary stiffeners which may be supported by horizontal girders.

2 Design lateral pressures

2.1 General

2.1.1 The design lateral pressures are to be calculated independently for all applicable load cases according to Ch 3, Sec 1, [4].

2.2 Plating and structural member design lateral pressures

2.2.1 The design lateral pressures \(p \) to be used for bulkhead plating and structural members are given in Tab 1.

Table 1: Bulkhead design lateral pressures

<table>
<thead>
<tr>
<th>Type of bulkhead</th>
<th>Lateral pressure (p), in kN/m(^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tank and hold bulkhead</td>
<td>(p_C)</td>
</tr>
<tr>
<td>Ballast tank bulkhead</td>
<td>(p_B)</td>
</tr>
<tr>
<td>Watertight bulkhead of compartments not intended to carry liquids</td>
<td>(p_L)</td>
</tr>
</tbody>
</table>

3 Hull girder normal stresses

3.1 General

3.1.1 The hull girder normal stresses are to be calculated for load cases “a” and “b” independently.

3.2 Plating subjected to lateral pressure

3.2.1 The hull girder normal stresses to be considered for the strength check of plating subjected to lateral pressure are to be determined using the formula:

\[
\sigma_{x_1} = 10^5 \max\left(\frac{M_{x_1} \cdot M_{y_1}}{I_y}\right)(z - N)\]

3.3 Structural members subjected to lateral pressure

3.3.1 The hull girder normal stresses to be considered for the yielding check of structural members subjected to lateral pressure and contributing to the longitudinal strength are given in Tab 3.

3.4 Hull girder normal compression stresses

3.4.1 The hull girder normal compression stresses to be considered for the buckling check of the plating and structural members which contribute to the longitudinal strength are given in Tab 2.

Table 2: Hull girder normal compression stresses

<table>
<thead>
<tr>
<th>Condition</th>
<th>(\sigma_{x_1}), in N/mm(^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(z \geq N)</td>
<td>(10^5 \frac{M_{x_1}}{I_y}(z - N))</td>
</tr>
<tr>
<td>(z < N)</td>
<td>(10^5 \frac{M_{x_1} \cdot M_{y_1}}{I_y}(z - N))</td>
</tr>
</tbody>
</table>

4 Plating scantling

4.1 Plating net thicknesses

4.1.1 The bulkhead plating net thickness, in mm, is not to be less than the values \(t_1 \) and \(t_2 \) given in Tab 4.

4.2 Strength check in testing conditions

4.2.1 Plating subjected to lateral pressure in testing conditions are to comply with Ch 5, Sec 1, [3].

Table 3: Hull girder normal stresses

<table>
<thead>
<tr>
<th>Structural members subjected to lateral pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Condition</td>
</tr>
<tr>
<td>Lateral pressure applied on the side opposite to the structural member, with respect to the plating</td>
</tr>
<tr>
<td>(z \geq N) in general; (z < N) for ordinary stiffeners simply supported at both ends</td>
</tr>
<tr>
<td>(z < N) in general; (z \geq N) for ordinary stiffeners simply supported at both ends</td>
</tr>
<tr>
<td>Lateral pressure applied on the same side as the structural member</td>
</tr>
<tr>
<td>(z \geq N) in general; (z < N) for ordinary stiffeners simply supported at both ends</td>
</tr>
<tr>
<td>(z < N) in general; (z \geq N) for ordinary stiffeners simply supported at both ends</td>
</tr>
</tbody>
</table>
Table 4: Bulkhead plating net thickness \(t \)

<table>
<thead>
<tr>
<th>Bulkheads</th>
<th>(t_i) in mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collision bulkhead</td>
<td>(t_i = 0.026 L , k_0.5 + 3.6 , s)</td>
</tr>
<tr>
<td></td>
<td>(t_\beta = 14.9 , C_i , C_s , \sqrt{\gamma_n , P_T} / R_y)</td>
</tr>
<tr>
<td>Watertight bulkhead and hold bulkhead</td>
<td>(t_i = 0.026 L , k_0.5 + 3.6 , s)</td>
</tr>
<tr>
<td></td>
<td>(t_\beta = 14.9 , C_i , C_s , \sqrt{\gamma_n , P_T} / R_y)</td>
</tr>
<tr>
<td>Tank bulkhead</td>
<td>(t_i = 2 + 0.003 L , k_0.5 + 3.6 , s) with (t_i \geq 4.4)</td>
</tr>
<tr>
<td></td>
<td>(t_\beta = 14.9 , C_i , C_s , \sqrt{\gamma_n , P_T} / R_y)</td>
</tr>
<tr>
<td>Wash bulkhead</td>
<td>(t_i = 2 + 0.003 L , k_0.5 + 3.6 , s) with (t_i \geq 4.4)</td>
</tr>
</tbody>
</table>

\section*{4.3 Buckling strength check}

\subsection*{4.3.1 The longitudinal bulkhead plating thickness, in mm, is to comply with the following formulae:}

\[
t_i = \frac{b}{\pi \, \sqrt{12 \, \gamma_n \, \gamma_m \, \sigma_{\beta} \, (1 - v^2)}} 10^{1} \quad \text{for} \quad \sigma_{\beta} \leq \frac{R_m}{2} \\
nt_i = \frac{b}{\pi \, \sqrt{3 \, R_m^2 \, (1 - v^2)}} 10^{1} \quad \text{for} \quad \sigma_{\beta} > \frac{R_m}{2}
\]

where \(\sigma_{\beta} \) is the maximum hull girder compression stress on the plate panel determined according to [3.4].

Buckling strength may be checked in compliance with Ch 2, Sec 6, at the Society's discretion.

\section*{5 Structural member scantlings}

\subsection*{5.1 Minimum web net thicknesses}

\subsubsection*{5.1.1 Ordinary stiffeners}

The net thickness, in mm, of the web plating of ordinary stiffeners is to be not less than:

\[
t = 1.1 + 0.0048 \, L \, k_0.5 + 4.8 \, s
\]

\subsection*{5.1.2 Primary supporting members}

The net thickness, in mm, of plating which forms the web of bulkhead primary supporting members is to be not less than the values obtained from the following formulae:
Pt B, Ch 5, Sec 5

- for collision bulkhead:
 \[t = 4.4 + 0.018 \, L \, k^{0.5} \]
- otherwise:
 \[t = 3.8 + 0.016 \, L \, k^{0.5} \]

5.2 Net section modulus and net sectional area of structural members

5.2.1 The net scantlings of bulkhead structural members are not to be less than the values obtained from Tab 5.

5.3 Strength check in testing conditions

5.3.1 The net section modulus, in cm³, and the net shear members being part of compartments or structures containing liquid is to comply with Ch 5, Sec 1, [3].

6 Bulkhead arrangements

6.1 General arrangement

6.1.1 Where an inner bottom terminates on a bulkhead, the lowest strake of the bulkhead forming the watertight floor of the double bottom is to extend at least 300 mm above the inner bottom.

6.1.2 Longitudinal bulkheads are to terminate at transverse bulkheads and are to be effectively tapered to the adjoining structure at the ends and adequately extended in the machinery space, where applicable.

6.1.3 The structural continuity of the bulkhead vertical and horizontal primary supporting members with the surrounding supporting structures is to be carefully ensured.

6.1.4 The height of vertical primary supporting members of longitudinal bulkheads may be gradually tapered from bottom to deck.

Requirements in Ch 5, Sec 3, [8.3] or Ch 5, Sec 3, [9.3] are to be complied with too.

7 Plane bulkheads

7.1 General

7.1.1 Where a bulkhead does not extend up to the uppermost continuous deck, such as the after peak bulkhead, suitable strengthening is to be provided in the extension of the bulkhead.

7.1.2 Bulkheads are to be stiffened in way of deck girders.

7.1.3 The stiffener webs of side tank watertight bulkheads are generally to be aligned with the webs of inner hull longitudinal stiffeners.

7.1.4 Floors are to be fitted in the double bottom in way of plane transverse bulkheads.

<table>
<thead>
<tr>
<th>Item</th>
<th>w, in cm³</th>
<th>(A_{n}), in cm²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transverse bulkhead</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vertical stiffeners</td>
<td>(w = \frac{\gamma_{x} \gamma_{s} \beta_{p} , \delta}{m , R_{y}} , S , f^{2} , 10^{3})</td>
<td>(A_{n} = 10 \gamma_{x} \gamma_{s} \beta_{p} , \frac{P , \eta}{S , f})</td>
</tr>
<tr>
<td>Transverse stiffeners</td>
<td>(w = \frac{\gamma_{x} \gamma_{s} \beta_{p} , \delta}{m , R_{y}} , S , f^{2} , 10^{3})</td>
<td>(A_{n} = 10 \gamma_{x} \gamma_{s} \beta_{p} , \frac{P , \eta}{S , f})</td>
</tr>
<tr>
<td>Web frames, transverses</td>
<td>(w = \frac{\gamma_{x} \gamma_{s} \beta_{p} , \delta}{m , R_{y}} , S , f^{2} , 10^{3})</td>
<td>(A_{n} = 10 \gamma_{x} \gamma_{s} \beta_{p} , \frac{P , \eta}{S , f})</td>
</tr>
<tr>
<td>Longitudinal bulkhead</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vertical stiffeners</td>
<td>(w = \frac{\gamma_{x} \gamma_{s} \beta_{p} , \delta}{m , (R_{y} - \gamma_{x} \gamma_{s} \sigma_{x})} , S , f^{2} , 10^{3})</td>
<td>(A_{n} = 10 \gamma_{x} \gamma_{s} \beta_{p} , \frac{P , \eta}{S , f})</td>
</tr>
<tr>
<td>Longitudinal stiffeners</td>
<td>(w = \frac{\gamma_{x} \gamma_{s} \beta_{p} , \delta}{m , (R_{y} - \gamma_{x} \gamma_{s} \sigma_{x})} , S , f^{2} , 10^{3})</td>
<td>(A_{n} = 10 \gamma_{x} \gamma_{s} \beta_{p} , \frac{P , \eta}{S , f})</td>
</tr>
<tr>
<td>Web frames</td>
<td>(w = \frac{\gamma_{x} \gamma_{s} \beta_{p} , \delta}{m , R_{y}} , S , f^{2} , 10^{3})</td>
<td>(A_{n} = 10 \gamma_{x} \gamma_{s} \beta_{p} , \frac{P , \eta}{S , f})</td>
</tr>
<tr>
<td>Stringers</td>
<td>(w = \frac{\gamma_{x} \gamma_{s} \beta_{p} , \delta}{m , (R_{y} - \gamma_{x} \gamma_{s} \sigma_{x})} , S , f^{2} , 10^{3})</td>
<td>(A_{n} = 10 \gamma_{x} \gamma_{s} \beta_{p} , \frac{P , \eta}{S , f})</td>
</tr>
</tbody>
</table>

Note 1:
\(m \) : Boundary coefficient, to be taken, in general, equal to:
- \(m = 12 \) for ordinary stiffeners
- \(m = 8 \) for primary supporting members.
- \(m = 10.6 \) for the stiffeners which are fixed at one end and simply supported/sniped at the other end

Note 2: The value of \(\sigma_{x} \) is to be taken in relation with the pressure \(p \) considered.
7.1.5 In way of the sterntube, the thickness of the after peak bulkhead plating is to be increased by 60%.
Instead of the thickness increase required herebefore, a doubling plate of the same thickness as the bulkhead plating may be fitted.

7.2 Bulkhead stiffeners

7.2.1 As a rule, stiffeners are to be fitted in way of structural components likely to exert concentrated loads, such as deck girders and pillars, and for engine room end bulkheads, at the ends of the engine seatings.

7.2.2 On vertically framed watertight bulkheads, where stiffeners are interrupted in way of the watertight doors, stanchions are to be fitted on either side of the door, carlings are to be fitted to support the interrupted stiffeners.

7.3 End connections

7.3.1 In general, end connections of ordinary stiffeners are to be welded directly to the plating or bracketed. However, stiffeners may be sniped, provided the scantlings of such stiffeners are modified accordingly.
Sniped ends may be accepted where the hull lines make it mandatory in the following cases:
- liquid compartment boundaries
- collision bulkhead.

7.3.2 Where sniped ordinary stiffeners are fitted, the snipe angle is to be not greater than 30° and their ends are to be extended, as far as practicable, to the boundary of the bulkhead.
Moreover, the thickness of the bulkhead plating supported by the stiffener is to be in compliance with Ch 2, Sec 4, [3.6.3].

7.4 Bracketed ordinary stiffeners

7.4.1 Where bracketed ordinary stiffeners are fitted, the arm lengths of end brackets of ordinary stiffeners, as shown in Fig 1 and Fig 2, are to be not less than the following values, in mm:
- for arm length a:
 - brackets of horizontal stiffeners and bottom bracket of vertical stiffeners:
 \[a = 100 \ell\]
 - upper bracket of vertical stiffeners:
 \[a = 80 \ell\]
- for arm length b, the greater of:
 \[b = \frac{a \alpha ps}{w t}\]
where:
\[\ell\] : Span, in m, of the stiffener measured between supports
\[w\] : Net section modulus, in cm³, of the stiffener
\[t\] : Net thickness, in mm, of the bracket

7.4.2 The connection between the stiffener and the bracket is to be such that the section modulus of the connection is not less than that of the stiffener.
The brackets are to extend up to the next stiffener where the framing is transverse, or connect the stiffener to a longitudinal stiffener where the framing is longitudinal.

8 Corrugated bulkheads

8.1 General

8.1.1 The main dimensions a, b, c and d of corrugated bulkheads are defined in Fig 3.
8.1.2 Unless otherwise specified, the following requirement is to be complied with:
\[a \leq 1,2d\]
Moreover, in some cases, the Society may prescribe an upper limit for the ratio b/t.

8.1.3 In general, the bending internal radius R_i is to be not less than the following values, in mm:
- for normal strength steel: $R_i = 2.5t$
- for high tensile steel: $R_i = 3.0t$

where t is the gross thickness, in mm, of the corrugated plate.

8.1.4 When butt welds in a direction parallel to the bend axis are provided in the zone of the bend, the welding procedures are to be submitted to the Society for approval, as a function of the importance of the structural element.

8.1.5 Transverse corrugated bulkheads having horizontal corrugations are to be fitted with vertical primary supporting members of number and size sufficient to ensure the required vertical stiffness of the bulkhead.

8.1.6 In general, where girders or vertical primary supporting members are fitted on corrugated bulkheads, they are to be arranged symmetrically.

8.2 Bulkhead scantlings

8.2.1 Bulkhead plating

The bulkhead plating net thickness is to be determined as specified in [5], substituting the stiffener spacing by the greater of the two values b and c, in m, as per 8.1.1.

8.2.2 Corrugations

The section modulus of a corrugation is to be not less than that of the equivalent stiffener having the same span as the corrugation and an attached plating width equal to $(b + a)$.

The actual section modulus of a corrugation is to be obtained according to Ch 2, Sec 4, [3.5.2].

Moreover, where the ratio $b / t \geq 46$, the net section modulus required for a bulkhead is to be in accordance with the following formula:

$$w = c_k (b + a) p \left(\frac{b}{80t} \right)^{1.5} 10^{-3}$$

where:
- c_k : Coefficient defined in Tab 6
- p : Bulkhead design pressure, in kN/m², calculated at mid-span.

8.2.3 Stringers and web frames

It is recommended to fit stringers or web frames symmetrically with respect to the bulkhead. In all cases, their section modulus is to be determined in the same way as for a plane bulkhead stringer or web frame.

8.3 Structural arrangement

8.3.1 The strength continuity of corrugated bulkheads is to be ensured at ends of corrugations.

8.3.2 Where corrugated bulkheads are cut in way of primary members, attention is to be paid to ensure correct alignment of corrugations on each side of the primary member.

8.3.3 In general, where vertically corrugated transverse bulkheads are welded on the inner bottom, floors are to be fitted in way of the flanges of corrugations.

However, other arrangements ensuring adequate structural continuity may be accepted by the Society.

8.3.4 Where stools are fitted at the lower part of transverse bulkheads, the thickness of adjacent plate floors is to be not less than that of the stool plating.

8.3.5 In general, where vertically corrugated longitudinal bulkheads are welded on the inner bottom, girders are to be fitted in double bottom in way of the flanges of corrugations.

However, other arrangements ensuring adequate structural continuity may be accepted by the Society.

8.3.6 In general, the upper and lower parts of horizontally corrugated bulkheads are to be flat over a depth equal to 0.1 D.

8.4 Bulkhead stool

8.4.1 In general, plate diaphragms or web frames are to be fitted in bottom stools in way of the double bottom longitudinal girders or plate floors, as the case may be.

8.4.2 Brackets or deep webs are to be fitted to connect the upper stool to the deck transverses or hatch end beams, as the case may be.

8.4.3 The continuity of the corrugated bulkhead with the stool plating is to be adequately ensured. In particular, the upper strake of the lower stool is to be of the same thickness and yield stress as those of the lower strake of the bulkhead.

Table 6: Values of coefficient c_k

<table>
<thead>
<tr>
<th>Boundary conditions</th>
<th>Collision bulkhead</th>
<th>Watertight bulkhead</th>
<th>Cargo hold bulkhead</th>
</tr>
</thead>
<tbody>
<tr>
<td>simply supported</td>
<td>1.73</td>
<td>1.38</td>
<td>1.04</td>
</tr>
<tr>
<td>(at one end)</td>
<td>1.53</td>
<td>1.20</td>
<td>0.92</td>
</tr>
<tr>
<td>clamped</td>
<td>1.15</td>
<td>0.92</td>
<td>0.69</td>
</tr>
</tbody>
</table>

Figure 3: Corrugated bulkhead
9 Hold bulkheads of open deck vessels

9.1 Special arrangements

9.1.1 The upper end of vertical stiffeners is to be connected either to a box beam or a stringer located at the stringer plate level or above.

9.1.2 As far as practicable, the bottom of the box beam or the bulkhead end stringer is to be located in the same plane as the stringer plate.

Where this is not the case, the bulkhead plating or the box beam sides are to be fitted with an efficient horizontal framing at that level.

9.1.3 The upper part of horizontally framed bulkheads are to be subject of a special review by the Society.

10 Non-tight bulkheads

10.1 General

10.1.1 Definition

A bulkhead is considered to be acting as a pillar when besides the lateral loads, axial loads are added.

10.2 Non-tight bulkheads not acting as pillars

10.2.1 Non-tight bulkheads not acting as pillars are to be provided with vertical stiffeners with a maximum spacing equal to:

- for transverse bulkheads: 0,9 m
- for longitudinal bulkheads: 2-frame spacings with a maximum of 1,5 m.

10.3 Non-tight bulkheads acting as pillars

10.3.1 Non-tight bulkheads acting as pillars are to be provided with vertical stiffeners with a maximum spacing equal to:

- 2-frame spacing, when the frame spacing does not exceed 0,75 m
- 1-frame spacing, when the frame spacing is greater than 0,75 m.

10.3.2 Each vertical stiffener, in association with a width of plating equal to 35 times the plating thickness, is to comply with the applicable requirements for pillars in Ch 5, Sec 4, [11], the load supported being determined in accordance with the same requirements.

10.3.3 In the case of non-tight bulkheads supporting longitudinally framed decks, web frames are to be provided in way of deck transverses.

11 Wash bulkheads

11.1 General

11.1.1 The requirements in [10.2] apply to transverse and longitudinal wash bulkheads whose main purpose is to reduce the liquid motions in partly filled tanks.

11.2 Openings

11.2.1 The total area of openings in a transverse wash bulkhead is generally to be less than 10% of the total bulkhead area.

In the upper, central and lower portions of the bulkhead (the depth of each portion being 1/3 of the bulkhead height), the areas of openings, expressed as percentages of the corresponding areas of these portions, are to be within the limits given in Tab 7.

11.2.2 In any case, the distribution of openings is to fulfill the strength requirements specified in [10.3].

11.2.3 In general, large openings may not be cut within 0,15 D from bottom and from deck.

Table 7: Areas of openings in transverse wash bulkheads

<table>
<thead>
<tr>
<th>Bulkhead portion</th>
<th>Lower limit</th>
<th>Upper limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper</td>
<td>10%</td>
<td>15%</td>
</tr>
<tr>
<td>Central</td>
<td>10%</td>
<td>50%</td>
</tr>
<tr>
<td>Lower</td>
<td>2%</td>
<td>10%</td>
</tr>
</tbody>
</table>
SECTION 6 VESSELS WITH LENGTH L < 40 M

Symbols

\(t \) : Net thickness, in mm, of plating
\(s \) : Spacing, in m, of ordinary stiffeners
\(S \) : Spacing, in m, of primary supporting members
\(\ell \) : Span, in m, of ordinary stiffeners or primary supporting members
\(\eta \) : Coefficient taken equal to:
\[\eta = 1 - \frac{s}{(2 \ell)} \]
\(p \) : Design lateral pressure, in kN/m\(^2\), defined in [2]
\(n \) : Navigation coefficient defined in Ch 3, Sec 1, [5.2]
\(\beta_b, \beta_s \) : Span correction coefficients defined in Ch 2, Sec 4, [5.2]
\(w \) : Net section modulus, in cm\(^3\), of ordinary stiffeners or primary supporting members
\(A_{sh} \) : Net web sectional area, in cm\(^2\).
\(k \) : Material factor defined in Ch 2, Sec 3, [2.4] and Ch 2, Sec 3, [3.4].
\(R_y \) : Minimum yield stress, in N/mm\(^2\), of the material, to be taken equal to 235/k N/mm\(^2\), unless otherwise specified
\(R_{yH} \) : Minimum yield stress, in N/mm\(^2\), of the material, defined in Ch 2, Sec 3, [2.4]
\(\gamma_R \) : Partial safety factor covering uncertainties regarding resistance, defined in Ch 5, Sec 1, [1.3]
\(\gamma_m \) : Partial safety factor covering uncertainties regarding material, defined in Ch 5, Sec 1, [1.3]
\(E \) : Young's modulus, in N/mm\(^2\), to be taken equal to:
 - for steels in general:
 \[E = 2.06 \times 10^5 \text{ N/mm}^2 \]
 - for stainless steels:
 \[E = 1.95 \times 10^5 \text{ N/mm}^2 \]
 - for aluminium alloys:
 \[E = 7.0 \times 10^4 \text{ N/mm}^2 \]
\(C_a \) : Aspect ratio, equal to:
\[C_a = 1.21 \left[\frac{1}{4} \left[1 + 0.33 \left(\frac{w}{s} \right)^{5/3} \right] - 0.69 \frac{s}{\ell} \right] \leq 1 \]
\(C_r \) : Coefficient of curvature, equal to:
\[C_r = 1 - 0.5 \frac{r}{s} \geq 0.5 \]
\(r \) : Radius of curvature, in m.

1 General

1.1 Application

1.1.1 As an alternative to the provisions of Ch 5, Sec 2 to Ch 5, Sec 5, this Section contains the requirements for the determination of the hull scantlings applicable to the central part of all types of vessels with length L < 40 m, of normal design and dimensions.

Cargo carriers covered by these requirements have their machinery aft and are assumed to be loaded and unloaded in two runs.

1.1.2 Arrangement and scantlings not covered by this Section are to be as specified in Ch 5, Sec 2 to Ch 5, Sec 5.

2 Design lateral pressures

2.1 General

2.1.1 The design lateral pressures are to be calculated independently for all applicable load cases according to Ch 3, Sec 1, [4].

2.2 Design lateral pressures

2.2.1 The design lateral pressures \(p \) of this Section are to be applied for the scantlings of the vessel central part according to Tab 1.

<table>
<thead>
<tr>
<th>Item</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bottom Plating</td>
<td>Sec 2, Tab 1</td>
</tr>
<tr>
<td>Structural</td>
<td>Members</td>
</tr>
<tr>
<td>Side Plating</td>
<td>and structural</td>
</tr>
<tr>
<td>Structural</td>
<td>members</td>
</tr>
<tr>
<td>Deck Plating</td>
<td>and structural</td>
</tr>
<tr>
<td>Structural</td>
<td>members</td>
</tr>
</tbody>
</table>

3 Strength deck sectional area

3.1 Strength deck

3.1.1 The strength deck is the uppermost continuous deck.
3.1.2 The sectional area of the strength deck is the sum of the sectional area of members contributing to the longitudinal strength. This sectional area includes:
- deck plating abreast hatchways
- stringer plates
- trunk structure
- deck longitudinal girders, provided their continuity is ensured
- where the deck is framed longitudinally, deck longitudinals, provided their continuity is ensured.

3.2 Gross sectional area of flush deck and trunk deck

3.2.1 Within the central part, the gross sectional area, in cm², of the deck structure in way of the hatchways is not to be less than:
\[A = 6 B s K_M Z (k L)^{0.5} \]
where:
\[K_M Z = \frac{K_M}{K_Z} \]
- \(K_M \) : Coefficient defined in Tab 2
- \(K_Z \) : Coefficient defined in Tab 3.

Table 2 : Values of coefficient \(K_M \)

<table>
<thead>
<tr>
<th>Range of navigation</th>
<th>Vessel type</th>
<th>Bottom and inner bottom plating</th>
<th>Top plating</th>
<th>Stiffeners</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN(0)</td>
<td>All</td>
<td>1,0</td>
<td>1,0</td>
<td>1,0</td>
</tr>
<tr>
<td>IN(0,6)</td>
<td>Self-propelled cargo carriers and passenger vessels</td>
<td>1,08</td>
<td>1,056</td>
<td>1,08</td>
</tr>
<tr>
<td></td>
<td>Non-propelled cargo carriers</td>
<td>1,0</td>
<td>1,0</td>
<td>1,0</td>
</tr>
<tr>
<td></td>
<td>Other vessels</td>
<td>1,2</td>
<td>1,5</td>
<td>1,5</td>
</tr>
<tr>
<td>IN(0,6 < x ≤ 2)</td>
<td>Self-propelled cargo carriers and passenger vessels</td>
<td>0,83 + 0,7 n</td>
<td>0,88 + 0,5 n</td>
<td>0,83 + 0,7 n</td>
</tr>
<tr>
<td></td>
<td>Non-propelled cargo carriers</td>
<td>0,385 + 1,5 n</td>
<td>0,75 + 0,53 n</td>
<td>0,385 + 1,5 n</td>
</tr>
<tr>
<td></td>
<td>Other vessels</td>
<td>1 + 0,7 n</td>
<td>1 + 1,5 n</td>
<td>1 + 1,5 n</td>
</tr>
</tbody>
</table>

4 Plating scantling

4.1 Plating net thicknesses

4.1.1 In the central part, the hull plating net thicknesses, in mm, are not to be less than the values \(t_1 \), \(t_2 \) and \(t_3 \) given in Tab 4.

4.2 Strength check in testing conditions

4.2.1 Plating subjected to lateral pressure in testing conditions are to comply with Ch 5, Sec 1, [3].

5 Structural member scantlings

5.1 Net section modulus and net sectional area of structural members

5.1.1 The net scantlings of contributing hull structural members are not to be less than the values given in Tab 5.

In addition, hatch coaming stiffener scantlings are to comply with the following formulae:
- for longitudinal stiffeners:
 \[i_e = 0,74 \ell \]
- for stays:
 \[l_{es} = 13 \left(\frac{b_C}{\ell} \right)^{1.5} i_e \]

where:
- \(h_C \) : Actual hatch coaming height above the deck, in m
- \(b_s \) : Width of attached plating of longitudinal stiffener:
 \[b_s = \min (0.2 \ell ; s) \]
- \(i_e \) : Radius of gyration, in cm:
 \[i_e = \frac{I_e}{A_e} \]
- \(I_e \) : Net moment of inertia, in cm⁴, of the stiffener with attached plating
- \(A_e \) : Net cross sectional area, in cm², of the stiffener with attached plating.

5.2 Strength check in testing conditions

5.2.1 The net section modulus, in cm⁴, and the net shear sectional area, in cm², of hull structural members are to comply with Ch 5, Sec 1, [3].
Table 4: Hull plating net thicknesses, in mm

<table>
<thead>
<tr>
<th>Item</th>
<th>Transverse framing</th>
<th>Longitudinal framing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bottom</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bottom</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Item</td>
<td>Formula</td>
<td>Formula</td>
</tr>
<tr>
<td>Bottom</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inner bottom</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Item</td>
<td>Formula</td>
<td>Formula</td>
</tr>
<tr>
<td>Side</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Item</td>
<td>Formula</td>
<td>Formula</td>
</tr>
<tr>
<td>Side</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Item</td>
<td>Formula</td>
<td>Formula</td>
</tr>
<tr>
<td>Open deck</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stringer plate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Item</td>
<td>Formula</td>
<td>Formula</td>
</tr>
<tr>
<td>Hatch coaming</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Item</td>
<td>Formula</td>
<td>Formula</td>
</tr>
<tr>
<td>Flush deck and trunk deck</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Item</td>
<td>Formula</td>
<td>Formula</td>
</tr>
<tr>
<td>Sheerstrake</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Item</td>
<td>Formula</td>
<td>Formula</td>
</tr>
</tbody>
</table>

Note 1:
- for doubling strake:
 \[t_2 = 2.6 + 0.076 \cdot L \cdot k^{0.5} + 3.6 \, s \]
- for inserted strake:
 \[t_3 = 3.6 + 0.11 \cdot L \cdot k^{0.5} + 3.6 \, s \]
Table 5: Net scantlings of hull structure

<table>
<thead>
<tr>
<th>Item</th>
<th>(w) (cm³)</th>
<th>(A_{sh}) (cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bottom, inner bottom, deck and hatch coaming longitudinals</td>
<td>(w = \frac{\gamma_s \gamma_m \beta_p \beta_m}{m R_y (1 - 18 \gamma_s \gamma_m K_{MZ})} \ell^2 10^{3})</td>
<td>(A_{sh} = 10 \gamma_s \gamma_m \beta_p \beta_m \frac{P}{R_y} \eta S \ell)</td>
</tr>
<tr>
<td>Side and inner side longitudinals</td>
<td>(w = \beta_m \frac{\gamma_s \gamma_m \beta_p \beta_m}{m R_y} \ell^2 10^{3})</td>
<td>(A_{sh} = 10 \gamma_s \gamma_m \beta_p \beta_m \frac{P}{R_y} S \ell)</td>
</tr>
<tr>
<td>Longitudinal bulkhead longitudinals</td>
<td>(w = \frac{\gamma_s \gamma_m \beta_p \beta_m}{m R_y} \ell^2 10^{3})</td>
<td>(A_{sh} = 10 \gamma_s \gamma_m \beta_p \beta_m \frac{P}{R_y} S \ell)</td>
</tr>
<tr>
<td>Side stringers and bottom girders (1)</td>
<td>(w = \frac{\gamma_s \gamma_m \beta_p \beta_m}{m R_y} \ell^2 10^{3})</td>
<td>(A_{sh} = 10 \gamma_s \gamma_m \beta_p \beta_m \frac{P}{R_y} S \ell)</td>
</tr>
<tr>
<td>Deck girders (1)</td>
<td>(w = \frac{\gamma_s \gamma_m \beta_p \beta_m}{m R_y} \ell^2 10^{3})</td>
<td>(A_{sh} = 10 \gamma_s \gamma_m \beta_p \beta_m \frac{P}{R_y} S \ell)</td>
</tr>
</tbody>
</table>

(1) The span \(\ell \) is to be taken equal to the side transverse spacing or web frame spacing.

Note 1:
- \(m \) : Boundary coefficient to be taken, in general, equal to:
 - \(m = 12 \) for ordinary stiffeners
 - \(m = 8 \) for primary supporting members
- \(K_{MZ} = \frac{K_M}{K_Z} \)
- \(K_M \) : Coefficient defined in Tab 2
- \(K_Z \) : Coefficient defined in Tab 3
APPENDIX 1 ANALYSES BASED ON THREE DIMENSIONAL MODELS

1 General

1.1 Application

1.1.1 The requirements of this Appendix apply for the analysis criteria, structural modelling, load modelling and stress calculation of primary supporting members which are to be analysed through three dimensional structural models, according to Ch 5, Sec 1, [5].

1.1.2 This Appendix deals with that part of the structural analysis which aims at calculating the stresses in the primary supporting members in the midship area and, when necessary, in other areas, which are to be used in the yielding and buckling checks.

1.1.3 The strength checks of primary supporting members are to be carried out according to:
- Ch 5, Sec 1, [5], for yielding
- Ch 2, Sec 6, for buckling.

2 Analysis criteria

2.1 General

2.1.1 All primary supporting members in the midship regions are normally to be included in the three dimensional model, with the purpose of calculating their stress level and verifying their scantlings.

When the primary supporting member arrangement is such that the Society can accept that the results obtained for the midship region are extrapolated to other regions, no additional analyses are required. Otherwise, analyses of the other regions are to be carried out.

2.2 Finite element model analyses

2.2.1 The analysis of primary supporting members is to be carried out on fine mesh models, as defined in [3.4.4].

2.2.2 Areas which appear, from the primary supporting member analysis, to be highly stressed may be required to be further analysed through appropriately meshed structural models, as defined in [3.4.4].

2.3 Beam model analyses

2.3.1 Beam models may be adopted provided that:
- primary supporting members are not so stout that the beam theory is deemed inapplicable by the Society
- their behaviour is not substantially influenced by the transmission of shear stresses through the shell plating.

In any case, finite element models are to be adopted when deemed necessary by the Society on the basis of the vessel’s structural arrangement.

3 Primary supporting members structural modelling

3.1 Model construction

3.1.1 Elements

The structural model is to represent the primary supporting members with the plating to which they are connected. Ordinary stiffeners are also to be represented in the model in order to reproduce the stiffness and inertia of the actual hull girder structure. The way ordinary stiffeners are represented in the model depends on the type of model (beam or finite element), as specified in [3.4] and [3.5].

3.1.2 Net scantlings

All the elements in [3.1.1] are to be modelled with their net scantlings according to Ch 2, Sec 5, [2]. Therefore, also the hull girder stiffness and inertia to be reproduced by the model are those obtained considering the net scantlings of the hull structures.

3.2 Model extension

3.2.1 The longitudinal extension of the structural model is to be such that:
- the hull girder stresses in the area to be analysed are properly taken into account in the structural analysis
- the results in the areas to be analysed are not influenced by the unavoidable inaccuracy in the modelling of the boundary conditions.

3.2.2 The model may be limited to one cargo tank/hold length (one half cargo tank/hold length on either side of the transverse bulkhead; see Fig 1). However, larger models may need to be adopted when deemed necessary by the Society on the basis of the vessel’s structural arrangement.

In any case, finite element models are to be adopted when deemed necessary by the Society on the basis of the vessel’s structural arrangement.

Figure 1 : Model longitudinal extension
3.2.3 In the case of structural symmetry with respect to the vessel’s centreline longitudinal plane, the hull structures may be modelled over half the vessel’s breadth.

3.3 Finite element modelling criteria

3.3.1 Modelling of primary supporting members

The analysis of primary supporting members based on fine mesh models, as defined in [3.4.4], is to be carried out by applying one of the following procedures (see Fig 2), depending on the computer resources:

- an analysis of the whole three dimensional model based on a fine mesh
- an analysis of the whole three dimensional model based on a coarse mesh, as defined in [3.4.2], from which the nodal displacements or forces are obtained to be used as boundary conditions for analyses based on fine mesh models of primary supporting members, e.g.:
 - transverse rings
 - double bottom girders
 - side girders
 - deck girders
 - primary supporting members of transverse bulkheads
 - primary supporting members which appear from the analysis of the whole model to be highly stressed.

3.3.2 Modelling of the most highly stressed areas

The areas which appear from the analyses based on fine mesh models to be highly stressed may be required to be further analysed, using the mesh accuracy specified in [3.4.4].

3.4 Finite element models

3.4.1 General

Finite element models are generally to be based on linear assumptions. The mesh is to be executed using membrane or shell elements, with or without mid-side nodes.

Meshing is to be carried out following uniformity criteria among the different elements.

Most of quadrilateral elements are to be such that the ratio between the longer side length and the shorter side length does not exceed 2. Some of them may have a ratio not exceeding 4. Their angles are to be greater than 60° and less than 120°. The triangular element angles are to be greater than 30° and less than 120°.

Further modelling criteria depend on the accuracy level of the mesh, as specified in [3.4.2] to [3.4.4].

3.4.2 Coarse mesh

The number of nodes and elements is to be such that the stiffness and inertia of the model properly represent those of the actual hull girder structure, and the distribution of loads among the various load carrying members is correctly taken into account.

To this end, the structural model is to be built on the basis of the following criteria:

- ordinary stiffeners contributing to the hull girder longitudinal strength and which are not individually represented in the model are to be modelled by rod elements and grouped at regular intervals
- webs of primary supporting members may be modelled with only one element on their height
- face plates may be simulated with bars having the same cross-section
- the plating between two primary supporting members may be modelled with one element strip
- holes for the passage of ordinary stiffeners or small pipes may be disregarded
- manholes (and similar discontinuities) in the webs of primary supporting members may be disregarded, but the element thickness is to be reduced in proportion to the hole height and the web height ratio.

In some specific cases, some of the above simplifications may not be deemed acceptable by the Society in relation to the type of structural model and the analysis performed.
3.4.3 Standard mesh

The vessel’s structure may be considered as finely meshed when each longitudinal ordinary stiffener is modelled; as a consequence, the standard size of finite elements used is based on the spacing of ordinary stiffeners.

The structural model is to be built on the basis of the following criteria:

- webs of primary members are to be modelled with at least three elements on their height
- the plating between two primary supporting members is to be modelled with at least two element strips
- the ratio between the longer side and the shorter side of elements is to be less than 3 in the areas expected to be highly stressed
- holes for the passage of ordinary stiffeners may be disregarded.

In some specific cases, some of the above simplifications may not be deemed acceptable by the Society in relation to the type of structural model and the analysis performed.

3.4.4 Fine mesh for the analysis of structural details

In order to obtain an accurate representation of stresses in the area of interest, the structural model is to be built on the basis of the following criteria:

- the mesh dimensions are to be such as to enable a faithful representation of the stress gradients
- the size of elements in the area of interest is not to be greater than 50 mm x 50 mm
- the extent of the refined area is to be at least of 10 elements in any direction around its centre
- the use of membrane elements is only allowed when significant bending effects are not present; in the other cases, elements with general behaviour are to be used
- the use of linear triangular elements is to be avoided as much as possible in high stress area; quadrilateral elements are to have 90° angles as much as possible, or angles between 60° and 120°; the aspect ratio is to be close to 1; when the use of a linear triangular element cannot be avoided, its edges are to have the same length
- the local fine mesh can either be included directly into the global model or belong to a separate sub-model; the gradient of mesh size must be reasonably low.

3.5 Beam models

3.5.1 Beams representing primary supporting members

Primary supporting members are to be modelled by beam elements with shear strain, positioned on their neutral axes.

3.5.2 Variable cross-section primary supporting members

In the case of variable cross-section primary supporting members, the inertia characteristics of the modelling beams may be assumed as a constant and equal to their average value along the length of the elements themselves.

3.5.3 Modelling of primary supporting members ends

The presence of end brackets may be disregarded; in such case their presence is also to be neglected for the evaluation of the beam inertia characteristics.

Rigid end beams are generally to be used to connect ends of the various primary supporting members, such as:

- floors and side vertical primary supporting members
- bottom girders and vertical primary supporting members of transverse bulkheads
- cross ties and side/longitudinal bulkhead primary supporting members.

3.5.4 Beams representing hull girder characteristics

The stiffness and inertia of the hull girder are to be taken into account by longitudinal beams positioned as follows:

- on deck and bottom in way of side shell and longitudinal bulkheads, if any, for modelling the hull girder bending strength
- on deck, side shell, longitudinal bulkheads, if any, and bottom for modelling the hull girder shear strength.

3.6 Boundary conditions of the whole three dimensional model

3.6.1 Structural model extended over at least three cargo tank/hold lengths

The whole three-dimensional model is assumed to be fixed at one end, while shear forces and bending moments are applied at the other end to ensure equilibrium (see [4]).

At the free end section, rigid constraint conditions are to be applied to all nodes located on longitudinal members, in such a way that the transverse section remains plane after deformation.

When the hull structure is modelled over half the vessel’s breadth (see [3.2.3]), in way of the vessel’s centreline longitudinal plane, symmetry or anti-symmetry boundary conditions as specified in Tab 1 are to be applied, depending on the loads applied to the model (symmetrical or anti-symmetrical, respectively).

<table>
<thead>
<tr>
<th>Boundary conditions</th>
<th>DISPLACEMENTS in directions (1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symmetry</td>
<td>free</td>
</tr>
<tr>
<td>Anti-symmetry</td>
<td>fixed</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Boundary conditions</th>
<th>ROTATION around axes (1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symmetry</td>
<td>fixed</td>
</tr>
<tr>
<td>Anti-symmetry</td>
<td>free</td>
</tr>
</tbody>
</table>

(1) X, Y and Z directions and axes are defined with respect to the reference co-ordinate system in Ch 1, Sec 2, [3.1].
3.6.2 Structural models extended over one cargo tank/hold length

Symmetry conditions are to be applied at the fore and aft ends of the model, as specified in Tab 2.

Table 2: Symmetry conditions at the model fore and aft ends

<table>
<thead>
<tr>
<th>DISPLACEMENTS in directions: (1)</th>
<th>ROTATION around axes: (1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Z</td>
<td>Z</td>
</tr>
<tr>
<td>fixed</td>
<td>free</td>
</tr>
<tr>
<td>free</td>
<td>fixed</td>
</tr>
<tr>
<td>free</td>
<td>fixed</td>
</tr>
</tbody>
</table>

(1) X, Y and Z directions and axes are defined with respect to the reference co-ordinate system in Ch 1, Sec 2, [3.1].

When the hull structure is modelled over half the vessel's breadth (see [3.2.3]), in way of the vessel’s centreline longitudinal plane, symmetry or anti-symmetry boundary conditions as specified in Tab 1 are to be applied, depending on the loads applied to the model (symmetrical or anti-symmetrical, respectively).

Vertical supports are to be fitted at the nodes positioned in way of the connection of the transverse bulkheads with longitudinal bulkheads, if any, or with sides.

4 Primary supporting members load model

4.1 General

4.1.1 Loading conditions

The loads are to be calculated for loading conditions defined in Part D for specific vessel notation.

4.1.2 Lightweight

The structure weight of the modelled portion of the hull is to be included in the static loads. In order to obtain the actual longitudinal distribution of the still water bending moment, the lightweight is to be uniformly distributed over the length of the model.

4.1.3 Models extended over half vessel's breadth

When the vessel is symmetrical with respect to its centreline longitudinal plane and the hull structure is modelled over half the vessel's breadth, non-symmetrical loads are to be broken down into symmetrical and anti-symmetrical loads and applied separately to the model with symmetry and anti-symmetry boundary conditions in way of the vessel’s centreline longitudinal plane (see [3.6]).

4.2 Local loads

4.2.1 General

Still water loads include:

- the still water external pressure, defined in Ch 3, Sec 4, [2]
- the still water internal loads, defined in Ch 3, Sec 4, [3] for the various types of cargoes and for ballast.

Wave loads include:

- the wave pressure, defined in Ch 3, Sec 4, [2.1.4]
- the inertial loads, defined in Ch 3, Sec 4, [3] for the various types of cargoes and for ballast.

4.2.2 Distributed loads

Distributed loads are to be applied to the plating panels.

In the analyses carried out on the basis of membrane finite element models or beam models, the loads distributed perpendicularly to the plating panels are to be applied on the ordinary stiffeners proportionally to their areas of influence. When ordinary stiffeners are not modelled or are modelled with rod elements (see [3.4]), the distributed loads are to be applied to the primary supporting members actually supporting the ordinary stiffeners.

4.2.3 Concentrated loads

When the elements directly supporting the concentrated loads are not represented in the structural model, the loads are to be distributed on the adjacent structures according to the actual stiffness of the structures which transmit them.

In the analyses carried out on the basis of coarse mesh finite element models or beam models, concentrated loads applied in five or more points almost equally spaced inside the same span may be applied as equivalent linearly distributed loads.

4.2.4 Cargo in sacks, bales and similar packages

The vertical loads are comparable to distributed loads. The loads on vertical walls may be disregarded.

4.2.5 Other cargoes

The modelling of cargoes other than those mentioned under [4.2.2] to [4.2.4] will be considered by the Society on a case by case basis.

4.3 Hull girder loads

4.3.1 Structural model extended over at least three cargo tank/hold lengths

The hull girder loads are constituted by:

- the still water and wave vertical bending moments
- the wave horizontal bending moment
- the still water and wave vertical shear forces,

and are to be applied at the model free end section. The shear forces are to be distributed on the plating according to the theory of bidimensional flow of shear stresses.

These loads are to be applied for the following two conditions:

- maximal bending moments at the middle of the central tank/hold within 0.4 L amidships
- maximal shear forces in way of the aft transverse bulkhead of the central tank/hold.

When the assessment of the foremost or aftmost cargo tank/hold is required, the following two conditions are to be considered:

- maximal bending moment for a given studied region along the length of the foremost/aftmost cargo tank/hold
- maximal shear force for a given studied region along the length of foremost/aftmost cargo tank/hold.
4.3.2 Structural model extended over one cargo tank/hold length

The normal and shear stresses induced by the hull girder loads are to be added to the stresses induced in the primary supporting members by local loads.

4.4 Additional requirements for the load assignment to beam models

4.4.1 Vertical and transverse concentrated loads are to be applied to the model, as shown in Fig 3, to compensate the portion of distributed loads which, due to the positioning of beams on their neutral axes, are not modelled.

In Fig 3, \(F_Y \) and \(F_Z \) represent concentrated loads equivalent to the dashed portion of the distributed loads which is not directly modelled.

Figure 3 : Concentrated loads equivalent to non-modelled distributed loads

5 Stress calculation

5.1 Analyses based on finite element models

5.1.1 Stresses induced by local and hull girder loads

When finite element models extend over at least three cargo tank/hold lengths, both local and hull girder loads are to be directly applied to the model, as specified in [4.3.1]. In this case, the stresses calculated by the finite element program include the contribution of both local and hull girder loads.

When finite element models extend over one cargo tank/hold length, only local loads are directly applied to the structural model, as specified in [4.3.2]. In this case, the stresses calculated by the finite element program include the contribution of local loads only. Hull girder stresses are to be calculated separately and added to the stresses induced by local loads.

5.1.2 Stress components

Stress components are generally identified with respect to the element co-ordinate system, as shown, by way of example, in Fig 4. The orientation of the element co-ordinate system may or may not coincide with that of the reference co-ordinate system in Ch 1, Sec 2, [3.1].

The following stress components are to be calculated at the centroid of each element:

- the normal stresses \(\sigma_1 \) and \(\sigma_2 \) in the directions of the element co-ordinate system axes
- the shear stress \(\tau_{12} \) with respect to the element co-ordinate system axes
- the Von Mises equivalent stress, obtained from the following formula:

\[
\sigma_{VM} = \sqrt{\sigma_1^2 + \sigma_2^2 - \sigma_1 \sigma_2 + 3 \tau_{12}^2}
\]

5.1.3 Stress calculation points

Stresses are generally calculated by the computer programs for each element. The values of these stresses are to be used for carrying out the checks required.

Figure 4 : Reference and element co-ordinate systems

5.2 Analyses based on beam models

5.2.1 Stresses induced by local and hull girder loads

Since beam models generally extend over one cargo tank/hold length (see [2.3.1] and [3.2.2]), only local loads are directly applied to the structural model, as specified in [4.3.2]. Therefore, the stresses calculated by the beam program include the contribution of local loads only. Hull girder stresses are to be calculated separately and added to the stresses induced by local loads.

5.2.2 Stress components

The following stress components are to be calculated:

- the normal stress \(\sigma_1 \) in the direction of the beam axis
- the shear stress \(\tau_{12} \) in the direction of the local loads applied to the beam
- the Von Mises equivalent stress, obtained from the following formula:

\[
\sigma_{VM} = \sqrt{\sigma_1^2 + 3 \tau_{12}^2}
\]
5.2.3 Stress calculation points

Stresses are to be calculated at least in the following points of each primary supporting member:

- in the primary supporting member span where the maximum bending moment occurs
- at the connection of the primary supporting member with other structures, assuming as resistant section that formed by the member, the bracket (if any and if represented in the model) and the attached plating
- at the toe of the bracket (if any and if represented in the model) assuming as resistant section that formed by the member and the attached plating.

The values of the stresses are to be used for carrying out the checks required.
APPENDIX 2

ANALYSES OF PRIMARY SUPPORTING MEMBERS SUBJECT TO WHEELED LOADS

Symbols

\[E : \text{Young's modulus, in N/mm}^2: \]

- \[E = 2.06 \times 10^5 \text{ for steel, in general} \]
- \[E = 1.95 \times 10^5 \text{ for stainless steel} \]
- \[E = 7.00 \times 10^4 \text{ for aluminium alloys.} \]

1 General

1.1 Scope

1.1.1 The requirements of this Appendix apply to the analysis criteria, structural modelling, load modelling and stress calculation of primary supporting members subjected to wheeled loads which are to be analysed through three dimensional structural models, according to Ch 5, Sec 1, [5].

1.1.2 The purpose of these structural analyses is to determine:

- the distribution of the forces induced by the vertical acceleration acting on wheeled cargoes, among the various primary supporting members of decks, sides and possible bulkheads
- the behaviour of the above primary supporting members under the racking effects due to the transverse forces induced by the transverse acceleration acting on wheeled cargoes, when the number or location of transverse bulkheads are not sufficient to avoid such effects, and to calculate the stresses in primary supporting members.

The above calculated stresses are to be used in the yielding and buckling checks.

In addition, the results of these analyses may be used, where deemed necessary by the Society, to determine the boundary conditions for finer mesh analyses of the most highly stressed areas.

1.1.3 When the behaviour of primary supporting members under the racking effects, due to the transverse forces induced by the transverse acceleration, is not to be determined, the stresses in deck primary supporting members may be calculated according to the simplified analysis in [6], provided that the conditions for its application are fulfilled (see [6.1]).

1.1.4 The yielding and buckling checks of primary supporting members are to be carried out according to Ch 5, Sec 1, [5.4.4].

1.2 Application

1.2.1 The requirements of this Appendix apply to vessels whose structural arrangement is such that the following assumptions may be considered as being applicable:

- primary supporting members of side and possible bulkheads may be considered fixed in way of the double bottom (this is generally the case when the stiffness of floors is at least three times that of the side primary supporting members)
- under transverse inertial forces, decks behave as beams loaded in their plane and supported at the vessel ends; their effect on the vessel transverse rings (side primary supporting members and deck beams) may therefore be simulated by means of elastic supports in the transverse direction or transverse displacements assigned at the central point of each deck beam.

1.2.2 When the assumptions in [1.2.1] are considered by the Society as not being applicable, the analysis criteria are defined on a case by case basis, taking into account the vessel's structural arrangement and loading conditions.

1.3 Information required

1.3.1 To perform these structural analyses, the following characteristics of vehicles loaded are necessary:

- load per axle
- arrangement of wheels on axles
- tyre dimensions.

1.4 Lashing of vehicles

1.4.1 The presence of lashing for vehicles is generally to be disregarded, but may be given consideration by the Society, on a case by case basis, at the request of the interested parties.
2 Analysis criteria

2.1 Finite element model analyses

2.1.1 Finite element models may need to be adopted when deemed necessary by the Society on the basis of the vessel’s structural arrangement.

2.2 Beam model analyses

2.2.1 Beam models, built according to Ch 5, App 1, [3.5], may be adopted in lieu of the finite element models, provided that:

- primary supporting members are not so stout that the beam theory is deemed inapplicable by the Society
- their behaviour is not substantially influenced by the transmission of shear stresses through the shell plating.

3 Primary supporting members structural modelling

3.1 Model construction

3.1.1 Elements

The structural model is to represent the primary supporting members with the plating to which they are connected. In particular, the following primary supporting members are to be included in the model:

- deck beams
- side primary supporting members
- primary supporting members of longitudinal and transverse bulkheads, if any
- pillars
- deck beams, deck girders and pillars supporting ramps and deck openings, if any.

3.1.2 Net scantlings

All the elements in [3.1.1] are to be modelled with their net scantlings according to Ch 2, Sec 5, [2].

3.2 Model extension

3.2.1 The structural model is to represent a hull portion which includes the zone under examination and which is repeated along the hull. The non-modelled hull parts are to be considered through boundary conditions as specified in [3.3].

In addition, the longitudinal extension of the structural model is to be such that the results in the areas to be analysed are not influenced by the unavoidable inaccuracy in the modelling of the boundary conditions.

3.2.2 Double bottom structures are not required to be included in the model, based on the assumptions in [1.2.1].

3.3 Boundary conditions of the three dimensional model

3.3.1 Boundary conditions at the lower ends of the model

The lower ends of the model (i.e. the lower ends of primary supporting members of side and possible bulkheads) are to be considered as being clamped in way of the inner bottom.

3.3.2 Boundary conditions at the fore and aft ends of the model

Symmetry conditions are to be applied at the fore and aft ends of the model, as specified in Tab 1.

Table 1: Symmetry conditions at the model fore and aft ends

<table>
<thead>
<tr>
<th>DISPLACEMENTS in directions: (1)</th>
<th>ROTATION around axes: (1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>Y</td>
</tr>
<tr>
<td>fixed</td>
<td>free</td>
</tr>
</tbody>
</table>

(1) X, Y and Z directions and axes are defined with respect to the reference co-ordinate system in Ch 1, Sec 2, [3.1].

3.3.3 Additional boundary conditions at the fore and aft ends of models subjected to transverse loads

When the model is subjected to transverse loads, i.e. when the loads in inclined vessel conditions are applied to the model, the transverse displacements of the deck beams are to be obtained by means of a racking analysis and applied at the fore and aft ends of the model, in way of each deck beam.

For vessels with a traditional arrangement of fore and aft parts, a simplified approximation may be adopted, when deemed acceptable by the Society, defining the boundary conditions without taking into account the racking calculation and introducing springs, acting in the transverse direction, at the fore and aft ends of the model, in way of each deck beam (see Fig 1). Each spring, which simulates the effects of the deck in way of which it is modelled, has a stiffness obtained, in kN/m, from the following formula:

\[R_D = \frac{24EJ_D}{2x^4 - 4L_Dx^2 + L_D^2(x^2 + 15\frac{16}{A_D}) + L_D^3x} \]

where:

- \(J_D \): Net moment of inertia, in m^4, of the average cross-section of the deck, with the attached side shell plating
- \(A_D \): Net area, in m^2, of the average cross-section of deck plating
- \(s \): Spacing of side vertical primary supporting members, in m
4 Load model

4.1 General

4.1.1 Hull girder and local loads

Only local loads are to be directly applied to the structural model.

The stresses induced by hull girder loads are to be calculated separately and added to the stresses induced by local loads.

4.1.2 Loading conditions and load cases: wheeled cargoes

The loads are to be calculated for the most severe loading conditions, with a view to maximising the stresses in primary supporting members.

The loads transmitted by vehicles are to be applied taking into account the most severe axle positions for the vessel structures.

4.1.3 Loading conditions and load cases: dry uniform cargoes

When the vessel’s decks are also designed to carry dry uniform cargoes, the loading conditions which envisage the transportation of such cargoes are also to be considered. The still water and wave loads induced by these cargoes are to be calculated for the most severe loading conditions, with a view to maximising the stresses in primary supporting members.
5.2 Analyses based on finite element models

5.2.1 Stress components

Stress components are generally identified with respect to the element co-ordinate system, as shown, by way of example, in Fig 2. The orientation of the element co-ordinate system may or may not coincide with that of the reference co-ordinate system in Ch 1, Sec 2, [3.1].

The following stress components are to be calculated at the centroid of each element:

- the normal stresses σ_1 and σ_2 in the directions of element co-ordinate system axes
- the shear stress τ_{12} with respect to the element co-ordinate system axes
- the Von Mises equivalent stress, obtained from the following formula:

$$\sigma_{VM} = \sqrt{\sigma_1^2 + \sigma_2^2 - \sigma_1\sigma_2 + 3\tau_{12}^2}$$

5.2.2 Stress calculation points

Stresses are generally calculated by the computer programs for each element. The values of these stresses are to be used for carrying out the checks required.

5.3 Analyses based on beam models

5.3.1 Stress components

The following stress components are to be calculated:

- the normal stress σ_{11} in the direction of the beam axis
- the shear stress τ_{12} in the direction of the local loads applied to the beam
- the Von Mises equivalent stress, obtained from the following formula:

$$\sigma_{VM} = \sqrt{\sigma_{11}^2 + 3\tau_{12}^2}$$

5.3.2 Stress calculation points

Stresses are to be calculated at least in the following points of each primary supporting member:

- in the primary supporting member span where the maximum bending moment occurs
- at the connection of the primary supporting member with other structures, assuming as resistant section that formed by the member, the bracket (if any and if represented in the model) and the attached plating
- at the toe of the bracket (if any and if represented in the model) assuming as resistant section that formed by the member and the attached plating.

The values of the stresses calculated in the above points are to be used for carrying out the checks required.

6 Grillage analysis of primary supporting members of decks

6.1 Application

6.1.1 For the sole purpose of calculating the stresses in deck primary supporting members, due to the forces induced by the vertical accelerations acting on wheeled cargoes, these members may be subjected to the simplified two dimensional analysis described in [6.2].

This analysis is generally considered as being acceptable for usual structural typology, where there are neither pillar lines, nor longitudinal bulkheads.

6.2 Analysis criteria

6.2.1 Structural model

The structural model used to represent the deck primary supporting members is a beam grillage model.

6.2.2 Model extension

The structural model is to represent a hull portion which includes the zone under examination and which is repeated along the hull. The non-modelled hull parts are to be considered through boundary conditions as specified in [3.3].

6.3 Boundary conditions

6.3.1 Boundary conditions at the fore and aft ends of the model

Symmetry conditions are to be applied at the fore and aft ends of the model, as specified in Tab 1.

6.3.2 Boundary conditions at the connections of deck beams with side vertical primary supporting members

Vertical supports are to be fitted at the nodes positioned in way of the connection of deck beams with side primary supporting members.
The contribution of flexural stiffness supplied by the side primary supporting members to the deck beams is to be simulated by springs, applied at their connections, having rotational stiffness, in the plane of the deck beam webs, obtained, in kN.m/rad, from the following formulae:

- for intermediate decks:
 \[R_i = \frac{3E(j_i + j_j)(\ell_1 + \ell_2)}{\ell_1^2 + \ell_2^2 - \ell_1 \ell_2} \times 10^{-5} \]

- for the uppermost deck:
 \[R_u = \frac{6Ej_1}{\ell_1} \times 10^{-5} \]

where:

\(\ell_1, \ell_2 \): Heights, in m, of the ‘tweendecks, respectively below and above the deck under examination (see Fig 3)

\(j_1, j_2 \): Net moments of inertia, in cm^4, of side primary supporting members with attached shell plating, relevant to the ‘tweendecks, respectively below and above the deck under examination.

6.4 Load model

6.4.1 Hull girder and local loads are to be calculated and applied to the model according to [4].

6.5 Stress calculation

6.5.1 Stress components are to be calculated according to [5.1] and [5.3].

Figure 3: Heights of tween-decks for grillage analysis of deck primary supporting members
APPENDIX 3 TORSION OF CATAMARANS

Symbols

Refer to Fig 1.

- \(G \) : Centre of the stiffnesses \(r_i \) of the \(m \) deck beams
- \(O \) : Origin of abscissae, arbitrarily chosen
- \(m \) : Number of deck transverses
- \(\xi_i \) : Abscissa, in \(m \), of deck beam \(i \) with respect to origin \(O \)
- \(S_i \) : Span of deck beam \(i \), in \(m \), between the inner faces of the hulls
- \(I_i \) : Bending inertia of deck beam \(i \), in \(m^4 \)
- \(E_i \) : Young’s modulus of deck beam \(i \), in \(N/mm^2 \), to be taken equal to
 - for steels in general: \(E_i = 2,06 \times 10^5 \ N/mm^2 \)
 - for stainless steels: \(E_i = 1,95 \times 10^5 \ N/mm^2 \)
 - for aluminium alloys: \(E_i = 7,00 \times 10^4 \ N/mm^2 \)
- \(r_i \) : Stiffness of deck beam \(i \), in \(N/m \), equal to:
 \[
 r_i = \frac{12 \cdot E_i \cdot I_i}{S_i^3} \times 10^6
 \]
- \(a \) : Abscissa, in \(m \), of the centre \(G \) with respect to origin \(O \)
 \[
 a = \frac{\sum r_i \cdot \xi_i}{\sum r_i}
 \]

If \(F_i \), in \(N \), is the force taken over by the deck beam \(i \), the deflection \(y_i \), in \(m \), of the hull in way of the beam \(i \), is:

\[
 y_i = \frac{F_i S_i^3}{12 E_i I_i} \times 10^{-6} = \frac{F_i}{r_i} d_i \varphi
\]

where:

- \(d_i \) : Abscissa, in \(m \), of the deck beam \(i \) with respect to origin \(G \):
 \[
 d_i = \xi_i - a
 \]
- \(\varphi \) : Rotation angle, in rad, of one hull in relation to the other around a transverse axis passing through \(G \).

1 General

1.1

1.1.1 In the special case of catamaran, when the structure connecting both hulls is formed by a deck with single plating stiffened by \(m \) reinforced beams, the normal and shear stresses in the beams can be calculated as indicated in [2].

2 Transverse strength in special case of catamaran

2.1 General

2.1.1 Deck beams are assumed to be fixed into each hull. Consequently, deck beams are to be extended throughout the breadth of each hull, with the same scantlings all over their span, inside and outside the hulls.

2.2 Transverse torsional connecting moment

2.2.1 The catamaran transverse torsional connecting moment, in \(kN.m \), about a transverse axis is given by:

\[
 M_t = 1,23 \Delta L \alpha_{CG}
\]
where:

\[\Delta \quad : \quad \text{Vessel displacement, in tons} \]

\[a_{CG} \quad : \quad \text{Design vertical acceleration at LCG, in m/s}^2, \text{to} \]

\[\text{be taken not less than:} \]

\[a_{CG} = 0.36 \text{Soc} \frac{v}{\sqrt{L}} \]

\[v \quad : \quad \text{Vessel speed, in km/h} \]

\[\text{Soc} \quad : \quad \text{Coefficient depending on the navigation coefficient } n, \text{defined as:} \]

\[\text{Soc} = 0.1 (n + 1.1) \]

Moreover, the transverse torsional moment may be expressed as:

\[M_h = \sum F_i \cdot d_i \cdot 10^{-3} \]

2.3 Calculation of rotation angle

2.3.1

The rotation angle may be derived from [2.2] and is given by the formula:

\[\omega = \frac{M_h}{\sum r_i \cdot d_i^2} \cdot 10^{-3} \]

2.4 Determination of stresses in deck beams

2.4.1

As \(M_h, r_i \), and \(d_i \) are known, \(\omega \) is thus deduced. Then \(F_i \), in N, the bending moment \(M_i \), in N.m, and the corresponding normal and shear stresses can be evaluated in each beam:

\[F_i = \omega r_i d_i \]

\[M_i = F_i \text{Soc} / 2 \]

2.5 Checking criteria

2.5.1

It is to be checked that the normal stress \(\sigma \) and the shear stress are in compliance with the following formulae:

\[\frac{R_y}{\gamma_k \gamma_m} \geq \sigma \]

\[0.5 \frac{R_y}{\gamma_k \gamma_m} \geq \tau \]

where:

\[R_y \quad : \quad \text{Minimum yield stress, in N/mm}^2, \text{of the material, to be taken equal to 235/k, unless otherwise specified} \]

\[\gamma_k \quad : \quad \text{Partial safety factor covering uncertainties regarding resistance, defined in Ch 5, Sec 1, [1.3]} \]

\[\gamma_m \quad : \quad \text{Partial safety factor covering uncertainties regarding material, defined in Ch 5, Sec 1, [1.3].} \]
Chapter 6
OTHER STRUCTURES

SECTION 1 FORE PART
SECTION 2 AFT PART
SECTION 3 MACHINERY SPACE
SECTION 4 SUPERSTRUCTURES AND DECKHOUSES
SECTION 5 HATCH COVERS
SECTION 6 MOVABLE DECKS AND RAMPS
SECTION 7 ARRANGEMENTS FOR HULL AND SUPERSTRUCTURE OPENINGS
SECTION 8 HELICOPTER DECKS AND PLATFORMS
SECTION 1

FORE PART

Symbols

t : Thickness, in mm, of plating
s : Spacing, in m, of ordinary stiffeners
S : Spacing, in m, of primary supporting members
f : Span, in m, of ordinary stiffeners or primary supporting members defined in Ch 2, Sec 4, [3.2] or Ch 2, Sec 4, [4.2]
p : Design load, in kN/m²
psT : Testing pressure, in kN/m², defined in Ch 3, Sec 4, [5.1.1]
g : Gravitational acceleration:
\[g = 9,81 \, \text{m/s}^2 \]
\[\sigma_{X1} : \text{Hull girder normal stress, in N/mm}^2, \text{defined in [2.2]} \]
aZ1 : Reference values of the accelerations in the upright vessel condition, defined in Ch 3, Sec 3, [2.3], calculated in way of the centre of gravity:
- of the compartment, in general
- of any dry unit cargo, in the case of this type of cargo
aZ2 : Reference values of the accelerations in the inclined vessel condition, defined in Ch 3, Sec 3, [2.3], calculated in way of the centre of gravity:
- of the compartment, in general
- of any dry unit cargo, in the case of this type of cargo
\[\eta : \text{Coefficient taken equal to:} \]
\[\eta = 1 - s / (2f) \]
H : Wave height defined in Ch 3, Sec 1, [5.1]
n : Navigation coefficient defined in Ch 3, Sec 1, [5.2]
\[\beta_b, \beta_s : \text{Span correction coefficients defined in Ch 2, Sec 4, [5.2]} \]
\[\lambda_b, \lambda_s : \text{Coefficients for pressure distribution correction defined in Ch 2, Sec 4, [5.3]} \]
w : Net section modulus, in cm³, of ordinary stiffeners or primary supporting members
Ash : Net shear sectional area, in cm²
k : Material factor defined in Ch 2, Sec 3, [2.4] and Ch 2, Sec 3, [3.4]
\[R_y : \text{Minimum yield stress, in N/mm}^2, \text{of the material, to be taken equal to 235/k N/mm}^2, \text{unless otherwise specified} \]
\[\gamma_b : \text{Partial safety factor covering uncertainties regarding resistance, defined in Tab 1} \]
\[\gamma_m : \text{Partial safety factor covering uncertainties regarding material:} \]
\[\gamma_m = 1,02 \]
z : Z co-ordinate, in m, of the calculation point
m : Boundary coefficient to be taken, in general, equal to:
- m = 12 for ordinary stiffeners
- m = 8 for primary supporting members
Other values of m may be considered, on a case by case basis, for other boundary conditions
f : Coefficient defined as follows:
\[f = 1,0 \quad \text{for} \quad 1,2 < H \leq 2 \]
\[f = 0,9 \quad \text{for} \quad 0,6 < H \leq 1,2 \]
\[f = 0,8 \quad \text{for} \quad H \leq 0,6 \]
\[C_a : \text{Aspect ratio, equal to:} \]
\[C_a = 1,21 \left(1 + 0,33 \left(\frac{H}{f}\right)^2\right) - 0,69 \frac{f}{H} + 1 \]
\[C_r : \text{Coefficient of curvature:} \]
\[C_r = 1 - 0,5 \frac{r}{\xi} \geq 0,5 \]
where:
r : Radius of curvature, in m
MTH : Total vertical bending moment in hogging condition, in kN.m, to be determined according to Ch 3, Sec 2, [5]
MTS : Total vertical bending moment in sagging condition, in kN.m, to be determined according to Ch 3, Sec 2, [5]
IY : Net moment of inertia, in cm⁴, of the hull transverse section around its horizontal neutral axis, to be calculated according to Ch 4, Sec 1
N : Z co-ordinate, in m, of the centre of gravity of the hull transverse section
CFA : Combination factor, to be taken equal to:
- CFA = 0,7 for load case “c”
- CFA = 1,0 for load case “d”
1 General

1.1 Application

1.1.1 The requirements of this Section apply to all vessels for the scantling of the fore part structures as defined in Ch 1, Sec 1, [2.1].

As to the requirements which are not explicitly dealt with in the present Section, refer to the previous Chapters.

1.1.2 Vessels with length L < 40 m

Where alternative requirements in Ch 5, Sec 6 have been adopted for the vessel central part, the associated fore part structure scantlings are to be determined from this Section considering a hull girder normal stress $\sigma_{X1} = 0$.

1.2 Net scantlings

1.2.1 As specified in Ch 2, Sec 5, [2], all scantlings referred to in this Section, with the exception of those indicated in [8], are net scantlings, i.e. they do not include any margin for corrosion.

1.3 Resistance partial safety factor

1.3.1 The resistance partial safety factor γ_R to be considered for the checking of the fore part structures is specified in Tab 1.

<table>
<thead>
<tr>
<th>Structures</th>
<th>Plating</th>
<th>Ordinary stiffeners</th>
<th>Primary supporting members</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>In general</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fore peak structures</td>
<td>1,20</td>
<td>1,40</td>
<td>1,60</td>
</tr>
<tr>
<td>Structures located aft of the collision bulkhead</td>
<td>1,20</td>
<td>1,02</td>
<td>1,20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vessel condition</th>
<th>Load case</th>
<th>Inertial pressure p_{W}, in kN/m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upright (positive heave motion)</td>
<td>“a”</td>
<td>No inertial pressure</td>
</tr>
<tr>
<td>“b”</td>
<td>$p_{W,Z} = \frac{p_S a_{Z1} g}{I_Y}$ in z direction</td>
<td></td>
</tr>
<tr>
<td>Inclined (negative roll angle)</td>
<td>“c”</td>
<td>$p_{W,Y} = \frac{p_S C_{I,Y} a_{Z2} g}{I_Y}$ in y direction</td>
</tr>
<tr>
<td>“d”</td>
<td>$p_{W,Z} = \frac{p_S C_{I,Y} a_{Z2} g}{I_Y}$ in z direction</td>
<td></td>
</tr>
</tbody>
</table>

1.4 Connections of the fore peak with structures located aft of the collision bulkhead

1.4.1 Tapering

Adequate tapering is to be ensured between the scantlings in the fore peak and those aft of the collision bulkhead. The tapering is to be such that the scantling requirements for both areas are fulfilled.

2 Design loads

2.1 Local loads

2.1.1 Pressure on sides and bottom

The design pressure on sides and bottom is to be determined in compliance with Ch 3, Sec 4.

2.1.2 Weather pressure on exposed deck

The weather pressure on exposed deck, in kN/m², is not to be taken less than:

$p = 3,75 (n + 0,8)$

2.1.3 Pressure due to load carried on deck

The pressure due to load carried on deck, in kN/m², is given by the formula:

$P = p_S + \gamma_{W2} p_W$

where:

- p_S : Still water pressure, in kN/m², transmitted to the deck structure, to be defined by the Designer
- γ_{W2} : Partial safety factor covering uncertainties regarding wave pressure:
 - $\gamma_{W2} = 1,0$ for $H = 0,6$
 - $\gamma_{W2} = 1,2$ for $H > 0,6$
- p_W : Inertial pressure, in kN/m² as specified in Tab 2.

<table>
<thead>
<tr>
<th>Vessel condition</th>
<th>Load case</th>
<th>Inertial pressure p_{W}, in kN/m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upright (positive heave motion)</td>
<td>“a”</td>
<td>No inertial pressure</td>
</tr>
<tr>
<td>“b”</td>
<td>$p_{W,Z} = \frac{p_S a_{Z1} g}{I_Y}$ in z direction</td>
<td></td>
</tr>
<tr>
<td>Inclined (negative roll angle)</td>
<td>“c”</td>
<td>$p_{W,Y} = \frac{p_S C_{I,Y} a_{Z2} g}{I_Y}$ in y direction</td>
</tr>
<tr>
<td>“d”</td>
<td>$p_{W,Z} = \frac{p_S C_{I,Y} a_{Z2} g}{I_Y}$ in z direction</td>
<td></td>
</tr>
</tbody>
</table>

2.2 Hull girder normal stresses

2.2.1 The hull girder normal stresses are to be calculated for load cases “a” and “b” independently.

2.3 Plating subjected to lateral pressure

2.3.1 The hull girder normal stresses to be considered for the strength check of plating subjected to lateral pressure are to be determined using the formula:

$\sigma_{X1} = \frac{1}{l_y} \max \left[\frac{M_{Y,Z1}}{I_Y}, \frac{M_{Z,Z1}}{I_Y} \right] (z - N)$

2.4 Structural members subjected to lateral pressure

2.4.1 The hull girder normal stresses to be considered for the yielding check of structural members subjected to lateral pressure and contributing to the longitudinal strength are given in Tab 3.
3 Strength check in testing conditions

3.1 General

3.1.1 The requirements of this Article provide the minimum scantlings of platings and structural members of compartments subjected to testing conditions.

Where the test conditions are subject to induce additional loads, the strength check is to be carried out by direct calculation.

3.2 Lateral pressure in testing conditions

3.2.1 The lateral pressure (pT) in testing conditions is taken equal to:

\[p_{ST} - p_S \] for bottom and side structures, if the testing is carried out afloat

\[p_{ST} \] otherwise,

where pS is the still water river pressure defined in Ch 3, Sec 4, [2.1] for the draught Ti at which the testing is carried out. If Ti is not defined by the Designer, it may be taken equal to 0.15 Ti.

3.3 Plating

3.3.1 The net thickness, in mm, of plating of compartments or structures subjected to testing conditions is not to be less than:

3.4 Structural members

3.4.1 The net section modulus w, in cm³, and the net shear sectional area A_sh, in cm², of structural members of compartments or structures subjected to testing conditions are not to be less than the values obtained from the formulae given in Tab 4.

Table 4 : Strength check of stiffeners in testing conditions

<table>
<thead>
<tr>
<th>Stiffener</th>
<th>w</th>
<th>A_sh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertical stiffeners (other than side frames of single hull)</td>
<td>[w = \gamma_k \gamma_{m} \beta_{m} \frac{p_{FT}}{m R_y} a e^{1.0}]</td>
<td>[A_{sh} = 10 \gamma_k \gamma_{m} \lambda_{m} \frac{p_{FT}}{R_y} \eta_1 \alpha_1 e^{2.0}]</td>
</tr>
<tr>
<td>Side frames (single hull)</td>
<td>[w = \gamma_k \gamma_{m} \beta_{m} \frac{a}{m R_y} (\lambda_{m} \beta_{m} + 1) (45 \lambda_{m} \beta_{m} + 1) e^{1.0}]</td>
<td>[A_{sh} = 10 \gamma_k \gamma_{m} \lambda_{m} \frac{p_{FT}}{R_y} \eta_1 \alpha_1 e^{2.0}]</td>
</tr>
<tr>
<td>Transverse stiffeners</td>
<td>[w = \gamma_k \gamma_{m} \beta_{m} \frac{p_{FT}}{m R_y} a e^{1.0}]</td>
<td>[A_{sh} = 10 \gamma_k \gamma_{m} \lambda_{m} \frac{p_{FT}}{R_y} \eta_1 \alpha_1 e^{2.0}]</td>
</tr>
<tr>
<td>Longitudinal stiffeners</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note 1:

- a : for ordinary stiffeners and floors: a = s
 - for primary supporting members: a = S
- \(\eta_1 \) : for ordinary stiffeners: \(\eta_1 = \eta \)
 - for primary supporting members: \(\eta_1 = 1 \)
- \(\lambda_m \) : Floor span, in m
- \(p_{ FT } \) : Floor lateral pressure in testing conditions, in kN/m²
- \(\lambda_{ m } \) : Coefficient to be taken equal to:
 - in transverse framing: \(\lambda_{ m } = 0.08 \)
 - in combination framing: \(\lambda_{ m } = 0 \)
4 Bottom scantlings and arrangements

4.1 Longitudinally framed bottom

4.1.1 Plating and ordinary stiffeners
The net scantlings of plating and ordinary stiffeners are to be not less than the values obtained from Tab 5.

4.1.2 Bottom transverses
Bottom transverses are to be fitted at every 8 frame spacings and generally spaced no more than 4 m apart.

The arrangements of bottom transverses are to be as required in the midship region.

Their scantlings are not to be less than required in Tab 6 nor lower than those of the corresponding side transverses, as defined in [5.2.2].

4.1.3 Fore peak arrangement
Where no centreline bulkhead is fitted, a centre bottom girder having the same dimensions and scantlings as required for bottom transverses is to be provided.

The centre bottom girder is to be connected to the collision bulkhead by means of a large end bracket.

Side girders, having the same dimensions and scantlings as required for bottom transverses, are generally to be fitted every two longitudinals, in line with bottom longitudinals located aft of the collision bulkhead. Their extension is to be compatible in each case with the shape of the bottom.

4.2 Transversely framed bottom

4.2.1 Plating
The scantling of plating is to be not less than the value obtained from the formulae in Tab 5.

4.2.2 Floors
Floors are to be fitted at every frame spacing.

The floor net scantlings are to be not less than those derived from Tab 6.

A relaxation from the Rules of dimensions and scantlings may be granted by the Society for very low draught vessels.

Table 5 : Net scantlings of bottom plating and structural members

<table>
<thead>
<tr>
<th>Item</th>
<th>Formula</th>
<th>Minimum net thickness (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bottom plating</td>
<td>Net thickness, in mm: $t_2 = 14, 9C_\alpha C_s s \sqrt{\frac{\gamma_m p}{A R_s}}$</td>
<td>Plating net thickness:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• longitudinal framing:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$t_1 = 1,1 + 0,03 L k^{0,5} + 3,6 s$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• transverse framing:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$t_1 = 1,85 + 0,03 L k^{0,5} + 3,6 s$</td>
</tr>
<tr>
<td>Bottom longitudinals</td>
<td>Net section modulus, in cm3: $w = \frac{\gamma_m p}{m(R_s - \gamma_m \sigma_{xt})} s \epsilon ^2 10^3$</td>
<td>Web net thickness:</td>
</tr>
<tr>
<td></td>
<td>Net shear sectional area, in cm2: $A_{sh} = 10 \gamma_m p B_R \eta \epsilon ^2$</td>
<td></td>
</tr>
<tr>
<td>Floors</td>
<td>Net section modulus, in cm3: $w = \gamma_m p \frac{B_R}{m} a \epsilon ^2 10^3$</td>
<td>Web net thickness:</td>
</tr>
<tr>
<td></td>
<td>Net shear sectional area, in cm2: $A_{sh} = 10 \gamma_m p B_R a \epsilon$</td>
<td></td>
</tr>
<tr>
<td>Bottom girders</td>
<td>Net section modulus, in cm3: $w = \frac{\gamma_m p B_R}{m(R_s - \gamma_m \sigma_{xt})} S \epsilon ^2 10^3$</td>
<td>Web net thickness:</td>
</tr>
<tr>
<td></td>
<td>Net shear sectional area, in cm2: $A_{sh} = 10 \gamma_m p B_R S \epsilon$</td>
<td></td>
</tr>
</tbody>
</table>

Note 1:

p : Bottom design load, in kN/m2, to be determined in compliance with [2.1.1]

a : Spacing, in m, of primary supporting members:

$a = s$ for floors

$a = S$ for bottom transverses.

λ : Coefficient taken equal to

• for longitudinally framed bottom $\lambda = \lambda_t$

$$\lambda_t = \frac{1 - 0.95 \left(\frac{\sigma_{xt}}{R_s} \right) - 0.225 \gamma_m \sigma_{xt} R_s}{\gamma_m R_s}$$

• for transversely framed bottom $\lambda = \lambda_t$

$$\lambda_t = 1 - 0.89 \frac{\sigma_{xt}}{R_s}$$
Table 6: Net scantling of side plating and structural members

<table>
<thead>
<tr>
<th>Item</th>
<th>Formula</th>
<th>Minimum net thickness (mm)</th>
</tr>
</thead>
</table>
| **Plating** | Net thickness, in mm: \(t = 14.9C_{C,s} \frac{\sqrt{\sigma_{\varepsilon}D}}{\lambda R_y} \) | Plating net thickness:
- longitudinal framing: \(t_l = 1.25 + 0.02 L k^{0.5} + 3.6 s \)
- transverse framing: \(t_l = 1.68 + 0.025 L k^{0.5} + 3.6 s \) |
| **Side longitudinals** | Net section modulus, in cm³: \(w = \frac{\gamma a \gamma a \beta_0 P}{m R_y} \left(6 \ell^2 + 1, 45 \lambda_0 \beta_0 \ell^2\right) 10^3 \)
Net shear sectional area, in cm²: \(A_h = 10 \gamma a \gamma a \beta_0 \frac{P}{R_y} \eta s \ell \) | Web net thickness: \(t = 1.63 + 0.004 L k^{0.5} + 4.5 s \) |
| **Side frames** | If \(\ell_0 \leq \ell \):
Net section modulus, in cm³: \(w = \frac{\gamma a \gamma a \beta_0 P}{m R_y} \frac{s}{m R_y} \left(6 \ell^2 + 1, 45 \lambda_0 \beta_0 \ell^2\right) 10^3 \)
Net shear sectional area, in cm²: \(A_h = 68 \gamma a \gamma a \beta_0 \frac{P}{R_y} \eta s \ell_0 \) | Web net thickness: \(t = 1.63 + 0.004 L k^{0.5} + 4.5 s \) |
| | If \(\ell_0 > \ell \):
Net section modulus, in cm³: \(w = \frac{\gamma a \gamma a \beta_0 P}{m R_y} \frac{\ell}{m R_y} s \ell^2 \ell_0 10^3 \)
Net shear sectional area, in cm²: \(A_h = 68 \gamma a \gamma a \beta_0 \frac{P}{R_y} \eta s \ell_0 \) | |
| **Intermediate side frames** | If \(\ell_0 \leq \ell \):
Net section modulus, in cm³: \(w = \frac{\gamma a a \gamma a \beta_0 P}{m R_y} \frac{\ell}{m R_y} s \ell^2 \ell_0 10^3 \)
Net shear sectional area, in cm²: \(A_h = 68 \gamma a \gamma a \beta_0 \frac{P}{R_y} \eta s \ell_0 \) | Web net thickness: \(t = 1.63 + 0.004 L k^{0.5} + 4.5 s \) |
| | If \(\ell_0 > \ell \):
Net section modulus, in cm³: \(w = \frac{\gamma a a \gamma a \beta_0 P}{m R_y} \frac{\ell}{m R_y} s \ell^2 \ell_0 10^3 \)
Net shear sectional area, in cm²: \(A_h = 10 \gamma a a \gamma a \beta_0 \frac{P}{R_y} \eta s \ell_0 \) | |
| **Side transverses and side web frames** | If \(\ell_0 \leq \ell \):
Net section modulus, in cm³: \(w = \frac{\gamma a a \gamma a \beta_0 P}{m R_y} \frac{\ell}{m R_y} s \ell^2 \ell_0 10^3 \)
Net shear sectional area, in cm²: \(A_h = 68 \gamma a a \gamma a \beta_0 \frac{P}{R_y} \eta s \ell_0 \) | Web net thickness: \(t = 3.8 + 0.016 L k^{0.5} \) |
| | If \(\ell_0 > \ell \):
Net section modulus, in cm³: \(w = \frac{\gamma a a \gamma a \beta_0 P}{m R_y} \frac{P}{m R_y} \eta s \ell_0 \)
Net shear sectional area, in cm²: \(A_h = 10 \gamma a a \gamma a \beta_0 \frac{P}{R_y} \eta s \ell_0 \) | |
4.2.3 Where no centreline bulkhead is fitted, a centre bottom girder is to be provided according to [4.1.3].

4.3 Keel plate

4.3.1 The thickness of the keel plate is to be not less than that of the adjacent bottom plating. Adequate tapering is to be ensured between the bottom and keel plating in the central part and the stem.

5 Side scantlings and arrangements

5.1 Arrangement

5.1.1 In way of the anchors, the side plating thickness is to be increased by 50%, or a doubling plate is to be provided. Where a break is located in the fore part deck, the thickness of the sheerstrake is to be increased by 40% in the region of the break.

5.1.2 The foreship of the vessels shall be built in such a way that the anchors do not stick out of the side shell.

5.2 Longitudinally framed side

5.2.1 Plating and ordinary stiffeners
The scantlings of plating and ordinary stiffeners are to be not less than the values obtained from Tab 6.

5.2.2 Side transverses
Side transverses are to be located in way of bottom transverses and are to extend to the upper deck. Their ends are to be amply faired in way of bottom and deck transverses.

5.3 Transversely framed side

5.3.1 Plating and ordinary stiffeners (side frames)
Side frames fitted at every frame space are to have the same vertical extension as the collision bulkhead. Where, due to the hull design, the distance between transverse stiffeners, measured on the plating, is quite greater than the frame spacing, this latter should be reduced, or intermediate frames with scantlings in compliance with Tab 6 are to be provided.

It is recommended to provide a side stringer where intermediate frames are fitted over a distance equal to the breadth B of the vessel.

The net scantlings of plating and side stiffeners are to be not less than the values obtained from the formulae in Tab 6.

Their net section modulus \(w \), in cm\(^3\), and net shear sectional area \(A_{sh} \), in cm\(^2\), are to be not less than the values derived from Tab 6.

5.3.2 Web frames
The web frames in a transverse framing system are to be spaced not more than 4 m apart.

The web frame section modulus is to be equal to the section modulus of the floor connected to it.

5.3.3 Fore peak arrangement
Depending on the hull body shape and structure aft of the collision bulkhead, one or more adequately spaced side stringers per side are to be fitted.

Table: Side stringers

<table>
<thead>
<tr>
<th>Item</th>
<th>Formula</th>
<th>Minimum net thickness (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Net section modulus, in cm(^3):</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(w = \frac{\gamma_k \gamma_m \beta_p \rho}{\mu (k_y - k_x) \gamma_x})</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Net shear sectional area, in cm(^2):</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(A_{sh} = 10 \gamma_k \gamma_m \beta_p \frac{\rho}{R_y})</td>
<td></td>
</tr>
</tbody>
</table>

Note 1:

- \(p \): Side design load, in kN/m\(^2\), to be determined in compliance with [2.1.1]
- \(\ell_0 \): Span parameter, in m: \(\ell_0 = \frac{p_d}{g} \)
- \(p_d \): Total pressure, in kN/m\(^2\), at the lower end of the stiffener
- \(\ell_f \): Floor span, in m
- \(p_f \): Floor design load, in kN/ m\(^2\), defined in [2.1.1]
- \(\lambda_w \): In transverse framing system: \(\lambda_w = 0.08 \)
 - In combination framing system: \(\lambda_w = 0 \)
- \(\lambda \): Coefficient taken equal to
 - for longitudinally framed bottom \(\lambda = \lambda_l \)
 \(\lambda_l = \sqrt{1 - 0.95 \left(\frac{\sigma_x}{R_y} \right)^2} - 0.225 \gamma_c \frac{\sigma_x}{R_y} \)
 - for transversely framed bottom \(\lambda = \lambda_t \)
 \(\lambda_t = 1 - 0.89 \gamma_c \frac{\sigma_x}{R_y} \)

<table>
<thead>
<tr>
<th>Item</th>
<th>Formula</th>
<th>Minimum net thickness (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Side stringers</td>
<td>Net section modulus, in cm(^3):</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(w = \frac{\gamma_k \gamma_m \beta_p \rho}{\mu (k_y - k_x) \gamma_x})</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Net shear sectional area, in cm(^2):</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(A_{sh} = 10 \gamma_k \gamma_m \beta_p \frac{\rho}{R_y})</td>
<td></td>
</tr>
</tbody>
</table>

Web net thickness: \(t = 3.8 + 0.016 L \) k\(^0.5\)

<table>
<thead>
<tr>
<th>Note 1:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(p)</td>
<td>Side design load, in kN/m(^2), to be determined in compliance with [2.1.1]</td>
</tr>
<tr>
<td>(\ell_0)</td>
<td>Span parameter, in m: (\ell_0 = \frac{p_d}{g})</td>
</tr>
<tr>
<td>(p_d)</td>
<td>Total pressure, in kN/m(^2), at the lower end of the stiffener</td>
</tr>
<tr>
<td>(\ell_f)</td>
<td>Floor span, in m</td>
</tr>
<tr>
<td>(p_f)</td>
<td>Floor design load, in kN/ m(^2), defined in [2.1.1]</td>
</tr>
<tr>
<td>(\lambda_w)</td>
<td>In transverse framing system: (\lambda_w = 0.08)</td>
</tr>
<tr>
<td>(\lambda)</td>
<td>Coefficient taken equal to</td>
</tr>
<tr>
<td></td>
<td>for longitudinally framed bottom (\lambda = \lambda_l)</td>
</tr>
<tr>
<td></td>
<td>(\lambda_l = \sqrt{1 - 0.95 \left(\frac{\sigma_x}{R_y} \right)^2} - 0.225 \gamma_c \frac{\sigma_x}{R_y})</td>
</tr>
<tr>
<td></td>
<td>for transversely framed bottom (\lambda = \lambda_t)</td>
</tr>
<tr>
<td></td>
<td>(\lambda_t = 1 - 0.89 \gamma_c \frac{\sigma_x}{R_y})</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Item</th>
<th>Formula</th>
<th>Minimum net thickness (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Side stringers</td>
<td>Net section modulus, in cm(^3):</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(w = \frac{\gamma_k \gamma_m \beta_p \rho}{\mu (k_y - k_x) \gamma_x})</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Net shear sectional area, in cm(^2):</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(A_{sh} = 10 \gamma_k \gamma_m \beta_p \frac{\rho}{R_y})</td>
<td></td>
</tr>
</tbody>
</table>

Web net thickness: \(t = 3.8 + 0.016 L \) k\(^0.5\)
The side stringer net section modulus \(w \), in \(\text{cm}^3 \), and shear sectional area \(A_{sh} \), in \(\text{cm}^2 \), are to be not less than the values obtained from Tab 6.

Non-tight platforms may be fitted in lieu of side girders. Their openings and scantlings are to be in accordance with [7.1] and their spacing is to be not greater than 2.5 m.

5.3.4 Access to fore peak

Manholes may be cut in the structural members to provide convenient access to all parts of the fore peak.

These manholes are to be cut smooth along a well rounded design and are not to be greater than that strictly necessary to provide the man access. Where manholes of greater sizes are needed, edge reinforcement by means of flat bar rings or other suitable stiffeners may be required.

6 Decks

6.1 Deck scantlings and arrangements

6.1.1 The scantlings of deck plating and structural members are to be not less than the values obtained from the formulae in Tab 7.

| Table 7 : Net scantling of deck plating and structural members |
|---|---|---|
| Item | Formula | Minimum net thickness (mm) |
| Plating | Net thickness: \(t_p = 14, 9C_sC_5 \sqrt{\frac{\rho_1}{\gamma_R}} \) | Plating net thickness:
 - longitudinal framing: \(t_1 = 0,57 + 0,031 L k^{0.5} + 3,6 s \)
 - transverse framing: \(t_1 = 0,9 + 0,034 L k^{0.5} + 3,6 s \) |
| Deck beams | Net section modulus, in \(\text{cm}^3 \):
 \(w = \frac{\gamma R \rho B s^2}{m(R_s - \gamma m \sigma_{xx})} \times 10^3 \) |
| | Net shear sectional area, in \(\text{cm}^2 \):
 \(A_{sh} = 10 \gamma R \rho B \frac{B s^2}{R_s} \eta \) |
| | Web net thickness: \(t = 1,63 + 0,004 L k^{0.5} + 4,5 s \) |
| Deck longitudinals | Net section modulus, in \(\text{cm}^3 \):
 \(w = \frac{\gamma R \rho B s^2}{m(R_s - \gamma m \sigma_{xx})} \times 10^3 \) |
| | Net shear sectional area, in \(\text{cm}^2 \):
 \(A_{sh} = 10 \gamma R \rho B \frac{B s^2}{R_s} \eta \) |
| | Web net thickness: \(t = 1,63 + 0,004 L k^{0.5} + 4,5 s \) |
| Deck transverses | Net section modulus, in \(\text{cm}^3 \):
 \(w = \frac{\gamma R \rho B s^2}{m(R_s - \gamma m \sigma_{xx})} \times 10^3 \) |
| | Net shear sectional area, in \(\text{cm}^2 \):
 \(A_{sh} = 10 \gamma R \rho B \frac{B s^2}{R_s} \eta \) |
| | Web net thickness: \(t = 3,8 + 0,016 L k^{0.5} \) |
| Deck girders | Net section modulus, in \(\text{cm}^3 \):
 \(w = \frac{\gamma R \rho B s^2}{m(R_s - \gamma m \sigma_{xx})} \times 10^3 \) |
| | Net shear sectional area, in \(\text{cm}^2 \):
 \(A_{sh} = 10 \gamma R \rho B \frac{B s^2}{R_s} \eta \) |
| | Web net thickness: \(t = 3,8 + 0,016 L k^{0.5} \) |

Note 1:

- \(p \) : Deck design load, in kN/m², to be determined in compliance with [2.1.2]
- \(\lambda \) : Coefficient taken equal to
 - for longitudinally framed bottom \(\lambda = \lambda_1 \)
 \(\lambda_1 = \sqrt{1 - 0,95 \left(\frac{\sigma_{xx}}{R_s} \right)} - 0,225 \gamma m \frac{\sigma_{xx}}{R_s} \)
 - for transversely framed bottom \(\lambda = \lambda_1 \)
 \(\lambda_1 = 1 - 0,89 \gamma m \frac{\sigma_{xx}}{R_s} \)
6.1.2 Where the hatchways form corners, the deck plating is to have the same thickness as the stringer plate. The deck plating is to be reinforced in way of the anchor windlass and other deck machinery, bollards, cranes, masts and derrick posts.

6.1.3 Supporting structure of windlasses and chain stoppers
For the supporting structure under windlasses and chain stoppers the permissible stresses as stated in Ch 5, Sec 1, [5.3.4] are to be observed.
The acting forces are to be calculated for 80% or 45% of the rated breaking load of the chain cable as follows:
a) for chain stoppers: 80%
b) for windlasses:
 • 80% when no chain stopper is fitted
 • 45% when a chain stopper is fitted.

6.2 Stringer plate
6.2.1 The net thickness of stringer plate, in mm, is to be not less than the greater of:
 • \(t = 2 + 0.032 L \sqrt{k} + 3.6 s \)
 • \(t = t_0 \)
where \(t_0 \) is the deck plating net thickness.

7 Non-tight bulkheads and platforms
7.1 Arrangements and scantlings
7.1.1 Non-tight platforms or bulkheads located inside the peak are to be provided with openings having a total area not less than 10% of that of the platforms, respectively bulkheads.
The scantlings of bulkheads and platforms are to comply with the requirements of non-tight bulkheads (see Ch 5, Sec 5, [10]).
The number and depth of non-tight platforms within the peak is considered by the Society on a case by case basis.
The platforms may be replaced by equivalent horizontal structures whose scantlings are to be supported by direct calculations.

8 Stems
8.1 General
8.1.1 Arrangement
Adequate continuity of strength is to be ensured at the connection of stems to the surrounding structure.
A abrupt changes in sections are to be avoided.

8.2 Plate stems
8.2.1 Thickness
The gross thickness, in mm, of the plate stem is to be not less than the value obtained, in mm, from the following formula:
\[
t = 1.37(0.95 + \frac{L}{L_k})^{0.5} \leq 15
\]
For non-propelled vessels, this value may be reduced by 20%.
This thickness is to be maintained from 0.1 m at least aft of the forefoot till the load waterline. Above the load waterline, this thickness may be gradually tapered towards the stem head, where it is to be not less than the local value required for the side plating or, in case of pontoon-shaped foreship, the local value required for the bottom plating.

8.2.2 Centreline stiffener
If considered necessary, and particularly where the stem radius is large, a centreline stiffener or web of suitable scantlings is to be fitted.
Where the stem plating is reinforced by a centreline stiffener or web, its thickness may be reduced by 10%.

8.2.3 Horizontal diaphragms
The plating forming the stems is to be supported by horizontal diaphragms spaced not more than 500 mm apart and connected, as far as practicable, to the adjacent frames and side stringers.
The diaphragm plate is to be at least 500 mm deep and its thickness is to be not less than 0.7 times that of the stem.

8.2.4 Pushing transom
Where self-propelled vessels are equipped for pushing other vessels in case of pontoon-shaped foreship, a pushing transom is to be fitted in compliance with Ch 7, Sec 6, [2.2].

8.3 Bar stems
8.3.1 Sectional area
The sectional area of bar stems constructed of forged or rolled steel is to be not less than the value obtained, in cm², from the following formula:
\[
A_p = k_f (0.006 L^2 + 12)
\]

8.3.2 Thickness
The gross thickness of the bar stems constructed of forged or rolled steel, is to be not less than the value obtained, in mm, from the following formula:
\[
t = 0.33 L \sqrt{k} + 10
\]

8.3.3 Extension
The bar stem is to extend beyond the forefoot over about 1 m.
Its cross-sectional area may be gradually tapered from the load waterline to the upper end.
8.3.4 Stiffened bar stem

Where the bar stem is reinforced by a flanged plate or a bulb flat stiffener, its sectional area may be reduced according to Tab 8.

<table>
<thead>
<tr>
<th>Sectional area A_p (cm2) of the plate stiffener</th>
<th>Reduction on sectional area of the bar stem</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1,50 \ t > 0,95 \ t$</td>
<td>10%</td>
</tr>
<tr>
<td>$A_p > 1,50 \ t$</td>
<td>15%</td>
</tr>
</tbody>
</table>

Note 1: t : Web thickness, in mm, of the plate stiffener.

9 Thruster tunnel

9.1 Scantlings of the thruster tunnel and connection with the hull

9.1.1 Net thickness of tunnel plating

The net thickness, in mm, of the tunnel plating is not to be less than that of the adjacent part of the hull, nor than that obtained from the following formula:

$$t = 4,4 + 0,024 \ L \ k^{0,5}$$

9.1.2 Connection with the hull

The tunnel is to be fully integrated in the bottom structure. Adequate continuity with the adjacent bottom structure is to be ensured.
SECTION 2 AFT PART

Symbols

t : Thickness, in mm, of plating
s : Spacing, in m, of ordinary stiffeners
S : Spacing, in m, of primary supporting members
\(\ell \) : Span, in m, of ordinary stiffeners or primary supporting members defined in Ch 2, Sec 4, [3.2] or Ch 2, Sec 4, [4.2]
p : Design load, in kN/ m²
pST : Testing pressure, in kN/ m², defined in Ch 3, Sec 4, [5.1.1]
g : Gravitational acceleration:
\(g = 9.81 \text{ m/s}^2 \)
\(\sigma_{x1} \) : Hull girder normal stress, in N/mm², defined in [2.2]
a_{z1} : Reference values of the accelerations in the upright vessel condition, defined in Ch 3, Sec 3, [2.3], calculated in way of the centre of gravity:
• of the compartment, in general
• of any dry unit cargo, in the case of this type of cargo
\(a_{x2}, a_{z2} \) : Reference values of the accelerations in the inclined vessel condition, defined in Ch 3, Sec 3, [2.3], calculated in way of the centre of gravity:
• of the compartment, in general
• of any dry unit cargo, in the case of this type of cargo
\(\eta \) : Coefficient taken equal to:
\(\eta = 1 - s / (2 \ell) \)
\(H \) : Wave height defined in Ch 3, Sec 1, [5.1]
\(n \) : Navigation coefficient defined in Ch 3, Sec 1, [5.2]
\(\beta_\ell, \beta_s \) : Span correction coefficients defined in Ch 2, Sec 4, [5.2]
\(\lambda_\ell, \lambda_s \) : Coefficients for pressure distribution correction defined in Ch 2, Sec 4, [5.3]
w : Net section modulus, in cm³, of ordinary stiffeners or primary supporting members
\(A_{sh} \) : Net shear sectional area, in cm²
k : Material factor defined in Ch 2, Sec 3, [2.4] and Ch 2, Sec 3, [3.4]
\(R_y \) : Minimum yield stress, in N/mm², of the material, to be taken equal to 235/k N/mm², unless otherwise specified
\(\gamma_6 \) : Partial safety factor covering uncertainties regarding resistance, defined in Tab 1
\(\gamma_m \) : Partial safety factor covering uncertainties regarding material:
\(\gamma_m = 1.02 \)
z : Z co-ordinate, in m, of the calculation point
\(m \) : Boundary coefficient, to be taken, in general, equal to:
• \(m = 12 \) for ordinary stiffeners
• \(m = 8 \) for primary supporting members.
Other values of \(m \) may be considered, on a case by case basis, for other boundary conditions
\(f \) : Coefficient defined as follows:
\(f = 1 \) for \(\text{IN}(0,6 < x \leq 2) \)
\(f = 0.9 \) for \(\text{IN}(0,6) \)
\(f = 0.8 \) for \(\text{IN}(0) \)
\(C_a \) : Aspect ratio:
\(C_a = 1.21 \sqrt{1 + 0.33(\frac{s}{\ell})^2} - 0.69 \frac{s}{\ell} \leq 1 \)
\(C_r \) : Coefficient of curvature:
\(C_r = 1 - 0.5\frac{s}{r} \geq 0, 5 \)
where
\(r \) : Radius of curvature, in m
\(M_{TH} \) : Total vertical bending moment in hogging condition, in kN.m, to be determined according to Ch 3, Sec 2, [5]
\(M_{TS} \) : Total vertical bending moment in sagging condition, in kN.m, to be determined according to Ch 3, Sec 2, [5]
\(I_Y \) : Net moment of inertia, in cm⁴, of the hull transverse section around its horizontal neutral axis, to be calculated according to Ch 4, Sec 1
\(N \) : Z co-ordinate, in m, of the centre of gravity of the hull transverse section.
\(C_{FA} \) : Combination factor, to be taken equal to
• \(C_{FA} = 0.7 \) for load case “c”
• \(C_{FA} = 1.0 \) for load case “d”
1 General

1.1 Application

1.1.1 The requirements of this Section apply to the scantling of structures located aft of the after peak bulkhead.

As to the requirements which are not explicitly dealt with in the present Section, refer to the previous Chapters.

1.1.2 Vessels with length \(L < 40 \text{ m} \)
Where alternative requirements in Ch 5, Sec 6 have been adopted for the vessel central part, the associated aft part structure scantlings are to be determined from this Section considering a hull girder normal stress \(\sigma_{X1} = 0 \).

1.2 Net scantlings

1.2.1 As specified in Ch 2, Sec 5, [2], all scantlings referred to in this Section, with the exception of those indicated in [5], are net scantlings, i.e. they do not include any margin for corrosion.

1.3 Resistance partial safety factor

1.3.1 The resistance partial safety factor \(\gamma_R \) to be considered for the checking of the aft peak structures is specified in Tab 1.

Table 1: Resistance partial safety factor \(\gamma_R \)

<table>
<thead>
<tr>
<th>Vessel condition</th>
<th>Load case</th>
<th>Inertial pressure (p_w), in (\text{kN/m}^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upright (positive heave motion)</td>
<td>“a”</td>
<td>No inertial pressure</td>
</tr>
<tr>
<td></td>
<td>“b”</td>
<td>(p_{w,z} = p_s \frac{a_{z2}}{g}) in (z) direction</td>
</tr>
<tr>
<td>Inclined (negative roll angle)</td>
<td>“c”</td>
<td>(p_{w,Y} = p_s \frac{C_{LX2}a_{y2}}{g}) in (y) direction</td>
</tr>
<tr>
<td></td>
<td>“d”</td>
<td>(p_{w,z} = p_s \frac{C_{LX2}a_{z2}}{g}) in (z) direction</td>
</tr>
</tbody>
</table>

2 Design loads

2.1 Local loads

2.1.1 Pressure on sides and bottom
The design pressure on sides and bottom is to be determined in compliance with Ch 3, Sec 4.

2.1.2 Weather pressure on exposed deck
The weather pressure on exposed deck, in \(\text{kN/m}^2 \), is not to be taken less than:
\[p = 3.75 (n + 0.8) \]

2.1.3 Pressure due to load carried on deck
The pressure due to load carried on deck, in \(\text{kN/m}^2 \), is given by the formula:
\[P = P_s + \gamma_{w2} p_w \]
where:
\(P_s \) : Still water pressure, in \(\text{kN/m}^2 \), transmitted to the deck structure, to be defined by the Designer
\(\gamma_{w2} \) : Partial safety factor covering uncertainties regarding wave pressure:
\(\gamma_{w2} = 1.0 \) for \(H = 0.6 \)
\(\gamma_{w2} = 1.2 \) for \(H > 0.6 \)
\(p_w \) : Inertial pressure, in \(\text{kN/m}^2 \) as specified in Tab 2

2.2 Hull girder normal stresses

2.2.1 The hull girder normal stresses are to be calculated for load cases “a” and “b” independently.

2.3 Plating subjected to lateral pressure

2.3.1 The hull girder normal stresses to be considered for the strength check of plating subjected to lateral pressure are to be determined using the formula:
\[\sigma_{X1} = 10 \frac{\max(M_{T25}M_{T5})}{I_y (z - N)} \]

2.4 Structural members subjected to lateral pressure

2.4.1 The hull girder normal stresses to be considered for the yielding check of structural members subjected to lateral pressure and contributing to the longitudinal strength are given in Tab 3.
3 Strength check in testing conditions

3.1 General

3.1.1 The requirements of this Section provide the minimum scantlings of platings and structural members of compartments subjected to testing conditions.

Where the test conditions are subject to induce additional loads, the strength check is to be carried out by direct calculation.

3.2 Lateral pressure in testing conditions

3.2.1 The lateral pressure (p_T) in testing conditions is taken equal to:

$$p_{ST} - p_S$$ for bottom and side structures, if the testing is carried out afloat

otherwise,

where p_S is the still water river pressure defined in Ch 3, Sec 4, [2.1] for the draught T_1 at which the testing is carried out.

If T_1 is not defined by the Designer, it may be taken equal to 0,15 T.

3.3 Plating

3.3.1 The net thickness, in mm, of plating of compartments or structures subjected to testing conditions is not to be less than:

3.4 Structural members

3.4.1 The net section modulus w, in cm3, and the net shear sectional area A_{sh}, in cm2, of structural members of compartments or structures subjected to testing conditions are not to be less than the values obtained from the formulae given in Tab 4.

Table 3: Hull girder normal stresses

<table>
<thead>
<tr>
<th>Condition</th>
<th>σ_{NS}, in N/mm2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lateral pressure applied on the side opposite to the structural member, with respect to the plating</td>
<td>$z \geq N$ in general; $z < N$ for ordinary stiffeners simply supported at both ends</td>
</tr>
<tr>
<td>Lateral pressure applied on the same side as the structural member</td>
<td>$z \geq N$ in general; $z < N$ for ordinary stiffeners simply supported at both ends</td>
</tr>
</tbody>
</table>

Table 4: Strength check of stiffeners in testing conditions

<table>
<thead>
<tr>
<th>Stiffener</th>
<th>w</th>
<th>A_{sh}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertical stiffeners (other than side frames of single hull)</td>
<td>$w = \gamma_C T \lambda_s \beta_s \frac{P_{FT}}{m R_y} \alpha \ell^2 10^3$</td>
<td>$A_{sh} = 10 \gamma_C T \lambda_s \beta_s \frac{P_{FT}}{m R_y} \alpha \ell$</td>
</tr>
<tr>
<td>Side frames (single hull)</td>
<td>$w = \gamma_C T \lambda_s \beta_s \frac{P_{FT} (\lambda_s \rho \ell^2 + 1,45 \lambda_s \rho \ell^2)}{m R_y} 10^3$</td>
<td>$A_{sh} = 10 \gamma_C T \lambda_s \beta_s \frac{P_{FT}}{m R_y} \eta_1 \alpha \ell$</td>
</tr>
<tr>
<td>Transverse stiffeners</td>
<td>$w = \gamma_C T \lambda_s \beta_s \frac{P_{FT}}{m R_y} \alpha \ell^2 10^3$</td>
<td>$A_{sh} = 10 \gamma_C T \lambda_s \beta_s \frac{P_{FT}}{m R_y} \eta_1 \alpha \ell$</td>
</tr>
<tr>
<td>Longitudinal stiffeners</td>
<td>$w = \gamma_C T \lambda_s \beta_s \frac{P_{FT}}{m R_y} \alpha \ell^2 10^3$</td>
<td>$A_{sh} = 10 \gamma_C T \lambda_s \beta_s \frac{P_{FT}}{m R_y} \eta_1 \alpha \ell$</td>
</tr>
</tbody>
</table>

Note 1:

- α : for ordinary stiffeners and floors: $a = s$
 - for primary supporting members: $a = 5$
- η_1 : for ordinary stiffeners: $\eta_1 = \eta$
 - for primary supporting members: $\eta_1 = 1$
- ℓ : Floor span, in m
- P_{FT} : Floor lateral pressure in testing conditions, in kN/m2
- λ_{sw} : Coefficient to be taken equal to:
 - in transverse framing: $\lambda_{sw} = 0,08$
 - in combination framing: $\lambda_{sw} = 0$
4 After peak

4.1 Arrangement

4.1.1 General
The after peak is, in general, to be transversely framed.

4.1.2 Floors
Floors are to be fitted at every frame spacing.
The floor height is to be adequate in relation to the shape of the hull. Where a sterntube is fitted, the floor height is to extend at least above the sterntube. Where the hull lines do not allow such an extension, plates of suitable height with upper and lower edges stiffened and securely fastened to the frames are to be fitted above the sterntube.

In way of and near the rudder post and propeller post, higher floors of increased thickness are to be fitted. The increase will be considered by the Society on a case by case basis, depending on the arrangement proposed.

4.1.3 Side frames
Side frames are to be extended up to the deck.

Where, due to the hull design, the actual spacing between transverse stiffeners, measured on the plating, is quite greater than the frame spacing, this later should be reduced, or intermediate frames with scantlings in compliance with Tab 6 are to be provided.

Table 5: Net scantlings of bottom plating and structural members

<table>
<thead>
<tr>
<th>Item</th>
<th>Formula</th>
<th>Minimum net thickness (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bottom plating</td>
<td></td>
<td>Plating net thickness:</td>
</tr>
<tr>
<td>Net thickness, in mm:</td>
<td>(t_1 = 14, 9C_cS \sqrt{\frac{\gamma_1p}{\lambda R_y}})</td>
<td>• longitudinal framing: (t_1 = 1,1 + 0,03L^{0.5} + 3.6 s)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• transverse framing: (t_1 = 1,85 + 0,03L^{0.5} + 3.6 s)</td>
</tr>
<tr>
<td>Net section modulus, in cm³:</td>
<td>(w = \frac{\gamma_1C_p}{m(\gamma_R - \gamma_0\sigma_{x1})} \sqrt{t}^{10^{-3}})</td>
<td>Web net thickness: (t = 1,63 + 0,004L^{0.5} + 4,5)</td>
</tr>
<tr>
<td>Net shear sectional area, in cm²:</td>
<td>(A_w = 10\gamma_1C_pS)</td>
<td></td>
</tr>
<tr>
<td>Bottom longitudinals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Net section modulus, in cm³:</td>
<td>(w = \frac{\gamma_1C_p}{mR_y} \sqrt{a^{7}}10^{-3})</td>
<td>Web net thickness: (t = 1,63 + 0,004L^{0.5} + 4,5)</td>
</tr>
<tr>
<td>Net shear sectional area, in cm²:</td>
<td>(A_w = 10\gamma_1C_pS)</td>
<td></td>
</tr>
<tr>
<td>Floors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Net section modulus, in cm³:</td>
<td>(w = \frac{\gamma_1C_p}{mR_y} \sqrt{a^{7}}10^{-3})</td>
<td>Web net thickness: (t = 1,63 + 0,004L^{0.5} + 4,5)</td>
</tr>
<tr>
<td>Net shear sectional area, in cm²:</td>
<td>(A_w = 10\gamma_1C_pS)</td>
<td></td>
</tr>
<tr>
<td>Bottom transverses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Net section modulus, in cm³:</td>
<td>(w = \frac{\gamma_1C_p}{mR_y} \sqrt{a^{7}}10^{-3})</td>
<td>Web net thickness: (t = 3,8 + 0,016L^{0.5})</td>
</tr>
<tr>
<td>Net shear sectional area, in cm²:</td>
<td>(A_w = 10\gamma_1C_pS)</td>
<td></td>
</tr>
<tr>
<td>Bottom girders</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Net section modulus, in cm³:</td>
<td>(w = \frac{\gamma_1C_p}{mR_y} \sqrt{a^{7}}10^{-3})</td>
<td>Web net thickness: (t = 3,8 + 0,016L^{0.5})</td>
</tr>
<tr>
<td>Net shear sectional area, in cm²:</td>
<td>(A_w = 10\gamma_1C_pS)</td>
<td></td>
</tr>
</tbody>
</table>

Note 1:
- \(p \): Bottom design load, in kN/m², to be determined in compliance with [2.1.1]
- \(a \): Spacing, in m, of primary supporting members:
 - \(a = s \) for floors
 - \(a = S \) for bottom transverses and bottom girders.
- \(\lambda \): Coefficient taken equal to
 - for longitudinally framed bottom \(\lambda = \lambda_L \)
 \[\lambda_L = \sqrt{1 - 0.95 \left(\gamma_R \sigma_{x1} \right)^2 - 0.225 \gamma_R \sigma_{x1}} \]
 - for transversely framed bottom \(\lambda = \lambda_T \)
 \[\lambda_T = 1 - 0.89 \gamma_R \sigma_{x1} \]
Table 6 : Net scantlings of side plating and structural members

<table>
<thead>
<tr>
<th>Item</th>
<th>Formula</th>
<th>Minimum net thickness (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Side plating</td>
<td>Net thickness:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$t_1 = 14.9C_C_1Cs \frac{t_{xy}y_0}{\lambda R_y}$</td>
<td>Plating net thickness:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• longitudinal framing:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$t_1 = 1.25 + 0.02 L k^{0.5} + 3.6 s$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• transverse framing:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$t_1 = 1.68 + 0.025 L k^{0.5} + 3.6 s$</td>
</tr>
<tr>
<td>Transom plating</td>
<td>Net thickness:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$t_1 = 14.9C_C_1Cs \frac{t_{xy}y_0}{\lambda R_y}$</td>
<td>Plating net thickness:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$t_1 = 1.68 + 0.025 L k^{0.5} + 3.6 s$</td>
</tr>
<tr>
<td>Side longitudinals</td>
<td>Net section modulus, in cm3:</td>
<td>Web net thickness:</td>
</tr>
<tr>
<td></td>
<td>$w = \frac{\gamma_C C_1 B_p}{m(R_y - \gamma_C m \sigma_{kh})} \times t^3$</td>
<td>$t = 1.63 + 0.004 L k^{0.5} + 4.5 s$</td>
</tr>
<tr>
<td></td>
<td>Net shear sectional area, in cm2:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$A_{sh} = 10\gamma_C C_1 B_p \frac{P}{R_y} \eta \ell \tau$</td>
<td></td>
</tr>
<tr>
<td>Transom horizontal stiffeners</td>
<td>Net section modulus, in cm3:</td>
<td>Web net thickness:</td>
</tr>
<tr>
<td></td>
<td>$w = \gamma_C C_1 B_p \frac{P}{mR_y} \times t^3$</td>
<td>$t = 1.63 + 0.004 L k^{0.5} + 4.5 s$</td>
</tr>
<tr>
<td></td>
<td>Net shear sectional area, in cm2:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$A_{sh} = 10\gamma_C C_1 B_p \frac{P}{R_y} \eta \ell \tau$</td>
<td></td>
</tr>
<tr>
<td>Side frames</td>
<td>Net section modulus, in cm3:</td>
<td>Web net thickness:</td>
</tr>
<tr>
<td>• if $\ell_2 \leq \ell$</td>
<td>$w = \gamma_C C_1 B_p \frac{S}{mR_y} (6\ell_0^2 + 1.45\lambda_C p C_{0.5}^* \ell^3) 10^3$</td>
<td>$t = 1.63 + 0.004 L k^{0.5} + 4.5 s$</td>
</tr>
<tr>
<td></td>
<td>Net shear sectional area, in cm2:</td>
<td></td>
</tr>
<tr>
<td>• if $\ell_2 \leq \ell$</td>
<td>$A_{sh} = 68\gamma_C C_1 B_p \frac{P}{R_y} \eta \ell \tau_0$</td>
<td></td>
</tr>
<tr>
<td>Intermediates frame</td>
<td>Net section modulus, in cm3:</td>
<td>Web net thickness:</td>
</tr>
<tr>
<td>• if $\ell_2 \leq \ell$</td>
<td>$w = \gamma_C C_1 B_p \frac{S}{mR_y} (45\lambda_C p C_{0.5}^* \ell^3) 10^3$</td>
<td>$t = 1.63 + 0.004 L k^{0.5} + 4.5 s$</td>
</tr>
<tr>
<td></td>
<td>Net shear sectional area, in cm2:</td>
<td></td>
</tr>
<tr>
<td>• if $\ell_2 \leq \ell$</td>
<td>$A_{sh} = 10\gamma_C C_1 B_p \frac{P}{R_y} \eta \ell \tau_0$</td>
<td></td>
</tr>
</tbody>
</table>
4.1 Platforms and side girders

Platforms and side girders within the peak are to be arranged in line with those located in the area immediately forward.

Where this arrangement is not possible due to the shape of the hull and access needs, structural continuity between the peak and the structures of the area immediately forward is to be ensured by adopting wide tapering brackets.

4.1.5 Longitudinal bulkheads

A longitudinal non-tight bulkhead is to be fitted on the centreline of the vessel, in general in the upper part of the peak, and stiffened at each frame spacing.

Where no longitudinal bulkhead is fitted, centre line bottom and deck girders having the same dimensions and scantlings as required respectively for bottom and deck transverses are to be provided.

4.2 Bottom scantlings

4.2.1 Bottom plating and structural members

The net scantlings of bottom plating and structural members are to be not less than those obtained from formulae in Tab 5.

The floor scantlings are to be increased satisfactorily in way of the rudder stock.

4.3 Side scantlings

4.3.1 Plating and structural members

The net scantlings of plating and structural members are to be not less than those obtained from formulae in Tab 6.

Note 1:

- \(p \): Side design load, in kN/m², to be determined in compliance with [2.1.1]
- \(\ell_0 \): Span parameter, in m: \(\ell_0 = \frac{p_d}{g} \)
- \(p_d \): Total pressure, in kN/m², at the lower end of the stiffener
- \(\ell_f \): Floor span, in m
- \(\lambda_w \): In transverse framing system: \(\lambda_w = 0.08 \)
 - In combination framing system: \(\lambda_w = 0 \)
- \(\lambda \): Coefficient taken equal to
 - for longitudinally framed bottom \(\lambda = \lambda_l \)

 \[
 \lambda_l = \sqrt{1 - 0.95 \left(\frac{\sigma_{x1}}{R_y} \right)^2 - 0.225 \gamma_m \frac{\sigma_{x1}}{R_y} - \gamma_m \frac{\sigma_{x1}}{R_y}}
 \]
 - for transversely framed bottom \(\lambda = \lambda_t \)

 \[
 \lambda_t = 1 - 0.89 \gamma_m \frac{\sigma_{x1}}{R_y}
 \]

<table>
<thead>
<tr>
<th>Item</th>
<th>Formula</th>
<th>Minimum net thickness (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Side transverse Side web frames</td>
<td>Net section modulus, in cm²: (w = 6 \gamma R_m \sigma_{x1} \frac{\ell_f}{\ell} S \ell_0^{1.0}) Net shear sectional area, in cm²: (A_{sh} = 6 \gamma R_m \lambda_n \sigma_{x1} S \ell_0)</td>
<td>Web net thickness: (t = 3.8 + 0.016 L k^{0.5})</td>
</tr>
<tr>
<td>Side stringers</td>
<td>Net section modulus, in cm²: (w = \gamma \gamma R_m \lambda_n S \ell_0^{1.0}) Net shear sectional area, in cm²: (A_{sh} = 10 \gamma R_m \lambda_n S \ell_0)</td>
<td>Web net thickness: (t = 3.8 + 0.016 L k^{0.5})</td>
</tr>
</tbody>
</table>

4.1.4 Platforms and side girders

Platforms and side girders within the peak are to be arranged in line with those located in the area immediately forward.

Where this arrangement is not possible due to the shape of the hull and access needs, structural continuity between the peak and the structures of the area immediately forward is to be ensured by adopting wide tapering brackets.

4.1.6 Local reinforcement

The deck plating is to be reinforced in way of the anchor windlass, steering gear and other deck machinery, bollards, cranes, masts and derrick posts.
4.3.2 Side transverses
Side transverses are to be located in way of bottom transverses and are to extend to the upper deck. Their ends are to be amply faired in way of bottom and deck transverses.

4.3.3 Side stringers
Where the vessel depth exceeds 2 m, a side stringer is to be fitted at about mid-depth.

4.4 Deck scantlings and arrangements

4.4.1 Plating and ordinary stiffeners
The net scantlings of deck plating and structural members are not to be less than those obtained from the formulae in Tab 7.

Where a break is located in the after part deck, the thickness of the sheerstrake is to be increased by 40% in the region of the break.

Table 7: Net scantlings of deck plating and structural members

<table>
<thead>
<tr>
<th>Item</th>
<th>Formula</th>
<th>Minimum net thickness (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deck plating</td>
<td>$t_2 = 14,9c_c s \sqrt{\frac{y_e b}{d_c}} \lambda R_y$</td>
<td>Plating net thickness:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• longitudinal framing:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$t_1 = 0,57 + 0,031 L k^{0,5} + 3,6 s$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• transverse framing:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$t_1 = 0,90 + 0,034 L k^{0,5} + 3,6 s$</td>
</tr>
<tr>
<td>Deck beams</td>
<td>$w = \frac{y_e \gamma_m b_p b_p}{m R_y} \cdot 10^{-3} \lambda^{0,5}$</td>
<td>Web net thickness:</td>
</tr>
<tr>
<td></td>
<td>$A_{n, h} = 10y_e \gamma_m b_p R_y \eta' \xi$</td>
<td>$t = 1,63 + 0,004 L k^{0,5} + 4,5 s$</td>
</tr>
<tr>
<td>Deck longitudinals</td>
<td>$w = \frac{y_e \gamma_m b_p b_p}{m (R_y - y_e \gamma_m \sigma_x)} \cdot 10^{-3} \lambda^{0,5}$</td>
<td>Web net thickness:</td>
</tr>
<tr>
<td></td>
<td>$A_{n, h} = 10y_e \gamma_m b_p R_y \eta' \xi$</td>
<td>$t = 1,63 + 0,004 L k^{0,5} + 4,5 s$</td>
</tr>
<tr>
<td>Deck transverses</td>
<td>$w = \frac{y_e \gamma_m b_p b_p}{m (R_y - y_e \gamma_m \sigma_x)} \cdot 10^{-3} \lambda^{0,5}$</td>
<td>Web net thickness:</td>
</tr>
<tr>
<td></td>
<td>$A_{n, h} = 10y_e \gamma_m b_p R_y \eta' \xi$</td>
<td>$t = 3,8 + 0,016 L k^{0,5}$</td>
</tr>
<tr>
<td>Deck girders</td>
<td>$w = \frac{y_e \gamma_m b_p b_p}{m (R_y - y_e \gamma_m \sigma_x)} \cdot 10^{-3} \lambda^{0,5}$</td>
<td>Web net thickness:</td>
</tr>
<tr>
<td></td>
<td>$A_{n, h} = 10y_e \gamma_m b_p R_y \eta' \xi$</td>
<td>$t = 3,8 + 0,016 L k^{0,5}$</td>
</tr>
</tbody>
</table>

Note 1:
- p: Deck design load, in kN/m², to be determined in compliance with [2.1.2].
- λ: Coefficient taken equal to
 - for longitudinally framed bottom $\lambda = \lambda_l$
 $\lambda_l = 1 - 0,95 \left(\frac{\sigma_{x, l}}{R_y} \right)^2 - 0,225 \gamma_m \frac{\sigma_{x, l}}{R_y}$
 - for transversely framed bottom $\lambda = \lambda_t$
 $\lambda_t = 1 - 0,89 \gamma_m \frac{\sigma_{x, t}}{R_y}$
4.4.2 The deck plating is to be reinforced in way of the anchor windlass and other deck machinery, bollards, cranes, masts and derrick posts.

The supporting structure of windlasses and chain stoppers is to be in compliance with Ch 6, Sec 1, [6.1.3].

4.4.3 Stringer plate

The net thickness of stringer plate, in mm, is to be not less than the greater of:

- \(t = 2 + 0.032 \, L^{0.5} + 3.6 \, s \)
- \(t = t_0 \)

where \(t_0 \) is the deck plating net thickness.

5 Sternframes

5.1 General

5.1.1 Sternframes may be made of cast or forged steel, with a hollow section, or fabricated from plate.

5.2 Connections

5.2.1 Heel

Sternframes are to be effectively attached to the aft structure. The propeller post heel is to extend forward over a length, in m, including the scarf, at least equal to:

\[d = 0.01 \, L + 0.6 \quad \text{with} \quad 1.2 \leq d \leq 1.8 \]

in order to provide an effective connection with the keel. However, the sternframe need not extend beyond the after peak bulkhead.

The value of \(d \) may, however, be reduced to 1 m where no centreline propeller is fitted.

5.2.2 Connection with hull structure

The thickness of shell plating connected with the sternframe is to be not less than the rule thickness of the bottom plating amidships.

5.2.3 Connection with the keel

The thickness of the lower part of the sternframes is to be gradually tapered to that of the solid bar keel or keel plate.

Where a keel plate is fitted, the lower part of the sternframe is to be so designed as to ensure an effective connection with the keel.

5.2.4 Connection with transom floors

Propeller post and rudder post should in their upper part be led and connected in suited and safe manner to the vessel structure. In the range where the forces of the rudder post are led into the vessel structure, the shell plating has to be strengthened.

The shape of the vessel’s stern, the thickness of the rudder and of the propeller well should be such that forces coming from the propeller are as small as possible.

In vessel’s transverse direction, the propeller post has to be fastened to strengthened and higher floor plates, which are connected by a longitudinal girder in plane of the propeller post over a range of several frames. Plates of longitudinal webs supporting floorplates, which the propeller post is directly connected to, should have a thickness of 0.30 times the thickness of the bar propeller post according to [5.3.1].

5.2.5 Connection with centre keelson

Where the sternframe is made of cast steel, the lower part of the sternframe is to be fitted, as far as practicable, with a longitudinal web for connection with the centre keelson.

5.3 Propeller posts

5.3.1 Scantlings of propeller posts

The gross scantlings of propeller posts are to be not less than those obtained from the formulae in Tab 8 for single and twin screw vessels.

These scantlings are to be maintained from the bottom to above the propeller boss. At the upper part, the scantlings may be reduced gradually to those of the rudder post, where the latter joins the propeller post.

In vessels having a high engine power with respect to their size, or subjected to abnormal stresses, strengthening of the propeller post may be called for by the Society.

Scantlings and proportions of the propeller post which differ from those above may be considered acceptable provided that the section modulus of the propeller post section about its longitudinal axis is not less than that calculated with the propeller post scantlings in Tab 8.

5.3.2 Welding of fabricated propeller post with the propeller shaft bossing

Welding of a fabricated propeller post with the propeller shaft bossing is to be in accordance with Ch 8, Sec 1, [3.4.1].

5.4 Propeller shaft bossing

5.4.1 Thickness

In single screw vessels, the thickness of the propeller shaft bossing, included in the propeller post, in mm, is to be not less than:

\[t = 6,6f(0.7L + 6) \quad \text{for} \quad L \leq 40 \]
\[t = 6,6f(1 - 6) \quad \text{for} \quad L > 40 \]

where:

\(f \) : Coefficient defined in the head of the Section.

5.5 Stern tubes

5.5.1 The stern tube thickness is to be considered by the Society on a case by case basis. In no case, it may be less than the thickness of the side plating adjacent to the sternframe.

Where the materials adopted for the stern tube and the plating adjacent to the sternframe are different, the stern tube thickness is to be at least equivalent to that of the plating.
Table 8: Gross scantlings of propeller posts

<table>
<thead>
<tr>
<th>Single screw vessels</th>
<th>Twin screw vessels</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fabricated propeller post</td>
<td>Fabricated propeller post</td>
</tr>
<tr>
<td>Bar propeller post, cast or forged, having rectangular section</td>
<td>Bar propeller post, cast or forged, having rectangular section</td>
</tr>
</tbody>
</table>

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a (mm)</td>
<td>a (mm)</td>
<td>a (mm)</td>
<td>a (mm)</td>
</tr>
<tr>
<td></td>
<td>29 L¹/²</td>
<td>14,1 A¹/²</td>
<td>29 L¹/²</td>
</tr>
<tr>
<td>b/a</td>
<td>0,7</td>
<td>0,5</td>
<td>0,7</td>
</tr>
<tr>
<td>t (mm)</td>
<td>2,5 L¹/²</td>
<td>thickness: NA</td>
<td>2,5 L¹/²</td>
</tr>
<tr>
<td></td>
<td>with t ≥ 1,3 tbottom midship</td>
<td></td>
<td>with t ≥ 1,3 tbottom midship</td>
</tr>
<tr>
<td>t₁ (mm)</td>
<td>2,5 L¹/²</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>with t₁ ≥ 1,3 tbottom midship</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t₂ (mm)</td>
<td>3,2 L¹/²</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>with t₂ ≥ 1,3 tbottom midship</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sectional area: NA</td>
<td>for L ≤ 40: A (cm²) = f (1,4 L + 12)</td>
<td>sectional area: NA</td>
<td>A (cm²) = f (0,005 L² + 20)</td>
</tr>
<tr>
<td></td>
<td>for L > 40: A (cm²) = f (2 L – 12)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t₃ (mm)</td>
<td>1,3 L¹/²</td>
<td>t₃: NA</td>
<td>1,3 L¹/²</td>
</tr>
<tr>
<td>t₄ (mm)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note 1:
- f: Coefficient defined in the head of the Section
- A: Sectional area, in cm², of the propeller post.

Note 2: NA = not applicable.

SECTION 3
MACHINERY SPACE

Symbols

- \(t \) : Net thickness, in mm, of plating
- \(s \) : Spacing, in m, of ordinary stiffeners
- \(S \) : Spacing, in m, of primary supporting members
- \(\ell \) : Span, in m, of ordinary stiffeners or primary supporting members defined in Ch 2, Sec 4, [3.2] or Ch 2, Sec 4, [4.2]
- \(p \) : Design load, in kN/m²
- \(p_{ST} \) : Testing pressure, in kN/m², defined in Ch 3, Sec 4, [5.1.1]
- \(\sigma_{X1} \) : Hull girder normal stress, in N/mm², defined in [2.2]
- \(a_{Z1} \) : Reference values of the accelerations in the upright vessel condition, defined in Ch 3, Sec 3, [2.3], calculated in way of the centre of gravity:
 - of the compartment, in general
 - of any dry unit cargo, in the case of this type of cargo
- \(a_{Z2} \) : Reference values of the accelerations in the inclined vessel condition, defined in Ch 3, Sec 3, [2.3], calculated in way of the centre of gravity:
 - of the compartment, in general
 - of any dry unit cargo, in the case of this type of cargo
- \(\eta \) : Coefficient taken equal to:
 \[\eta = 1 - s / (2 \ell) \]
- \(H \) : Wave height defined in Ch 3, Sec 1, [5.1]
- \(n \) : Navigation coefficient defined in Ch 3, Sec 1, [5.2]
- \(\beta_0, \beta_1 \) : Span correction coefficients defined in Ch 2, Sec 4, [5.2]
- \(\lambda_n, \lambda_s \) : Coefficients for pressure distribution correction defined in Ch 2, Sec 4, [5.3]
- \(w \) : Net section modulus, in cm³, of ordinary stiffeners or primary supporting members
- \(A_{sh} \) : Net shear sectional area, in cm²
- \(k \) : Material factor defined in Ch 2, Sec 3, [2.4] and Ch 2, Sec 3, [3.4]
- \(R_y \) : Minimum yield stress, in N/mm², of the material, to be taken equal to 235/k N/mm², unless otherwise specified
- \(\gamma_r \) : Partial safety factor covering uncertainties regarding resistance, defined in Tab 1
- \(\gamma_m \) : Partial safety factor covering uncertainties regarding material:
 \[\gamma_m = 1.02 \]
- \(z \) : Z co-ordinate, in m, of the calculation point
- \(m \) : Boundary coefficient to be taken, in general, equal to:
 - \(m = 12 \) for ordinary stiffeners
 - \(m = 8 \) for primary supporting members.

Other values of \(m \) may be considered, on a case by case basis, for other boundary conditions.

- \(M_{TH} \) : Total vertical bending moment in hogging condition, in kN.m, to be determined according to Ch 3, Sec 2, [5]
- \(M_{TS} \) : Total vertical bending moment in sagging condition, in kN.m, to be determined according to Ch 3, Sec 2, [5]
- \(C_n \) : Aspect ratio:
 \[C_n = 1.21 \sqrt{1 + 0.33 \left(\frac{S}{\ell} \right)^2} - 0.69 \frac{S}{\ell} \leq 1 \]
- \(C_r \) : Coefficient of curvature:
 \[C_r = 1 - 0.5 \frac{S}{r} \geq 0, 5 \]
- \(I_y \) : Net moment of inertia, in cm⁴, of the hull transverse section around its horizontal neutral axis, to be calculated according to Ch 4, Sec 1
- \(N \) : Z co-ordinate, in m, of the centre of gravity of the hull transverse section.
- \(C_{FA} \) : Combination factor, to be taken equal to
 - \(C_{FA} = 0.7 \) for load case “c”
 - \(C_{FA} = 1.0 \) for load case “d”

1 General

1.1 Application

1.1.1 The rules of this Section apply to the arrangement and scantling of the machinery space structures. They are to be considered as recommendations.

As to the requirements which are not explicitly dealt with in the present Section, refer to the previous Chapters.

1.1.2 Alternative arrangements and scantlings on the basis of direct calculations are to be submitted to the Society on a case by case basis.

1.1.3 **Vessels with length \(L < 40 \) m**

On vessels with machinery space located in the aft part, where alternative requirements in Ch 5, Sec 6 have been adopted for the vessel central part, the associated machinery space structure scantlings are to be determined from this Section considering a hull girder normal stress \(\sigma_{X1} = 0 \).
1.2 Net scantlings

1.2.1 As specified in Ch 2, Sec 5, [2], all scantlings referred to in this Section are net scantlings, i.e. they do not include any margin for corrosion.

1.3 Resistance partial safety factor

1.3.1 The resistance partial safety factor γ_R to be considered for the checking of the machinery space structures is specified in Tab 1.

<table>
<thead>
<tr>
<th>Machinery space structures</th>
<th>Plating</th>
<th>Ordinary stiffeners</th>
<th>Primary supporting members</th>
</tr>
</thead>
<tbody>
<tr>
<td>In general</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bottom and side girders</td>
<td>1,20</td>
<td>1,02</td>
<td>1,15</td>
</tr>
<tr>
<td>Other primary supporting members</td>
<td>1,02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>In testing / flooding conditions</td>
<td>1,05</td>
<td>1,02</td>
<td>1,02</td>
</tr>
</tbody>
</table>

1.4 Connections of the machinery space with the structures located aft and forward

1.4.1 Tapering

Adequate tapering is to be ensured between the scantlings in the machinery space and those located aft and forward. The tapering is to be such that the scantling requirements for all areas are fulfilled.

1.4.2 Deck discontinuities

a) Decks which are interrupted in the machinery space are to be tapered on the side by means of horizontal brackets. Where the deck is inclined, the angle of inclination is to be limited. The end of slope is to be located in way of reinforced ring.

b) Where the inclination of deck is limited by transverse bulkheads, the continuity of the longitudinal members is to be ensured.

In way of breaks in the deck, the continuity of longitudinal strength is to be ensured. To that effect, the stringer of the lower deck is to:

- extend beyond the break, over a length at least equal to three times its width
- stop at a web frame of sufficient scantlings.

c) At the ends of the sloped part of the deck, suitable arrangements are required to take into account the vertical component of the force generated in the deck.

1.5 Arrangements

1.5.1 Every engine room must normally have two exits. The second exit may be an emergency exit. If a skylight is permitted as an escape, it must be possible to open it from the inside. See also Pt C, Ch 3, Sec 5, [3.1].

1.5.2 For the height of entrances to machinery space, see Ch 6, Sec 7, [7.4].

2 Design loads

2.1 Local loads

2.1.1 Pressure on sides and bottom

The design pressure on sides and bottom is to be determined in compliance with Ch 3, Sec 4.

2.1.2 Weather pressure on exposed deck

The weather pressure on exposed deck, in kN/m², is not be taken less than

\[p = 3,75 \, (n + 0,8) \]

2.1.3 Pressure due to load carried on deck

The pressure due to load carried on deck, in kN/m², is given by the formula:

\[P = P_s + \gamma_{W2} \, P_{W} \]

where:

- P_s : Still water pressure, in kN/m², transmitted to the deck structure, to be defined by the Designer
- γ_{W2} : Partial safety factor covering uncertainties regarding wave pressure:
 - $\gamma_{W2} = 1,0$ for $H = 0,6$
 - $\gamma_{W2} = 1,2$ for $H > 0,6$
- P_W : Inertial pressure, in kN/m² as specified in Tab 2.

2.2 Hull girder normal stresses

2.2.1 The hull girder normal stresses are to be calculated for load cases “a” and “b” independently.

<table>
<thead>
<tr>
<th>Vessel condition</th>
<th>Load case</th>
<th>Inertial pressure P_w in kN/m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upright (positive heave motion)</td>
<td>“a”</td>
<td>No inertial pressure</td>
</tr>
<tr>
<td></td>
<td>“b”</td>
<td>$P_{W,Z} = P_s \frac{a_{Z1}}{g}$ in z direction</td>
</tr>
<tr>
<td>Inclined (negative roll angle)</td>
<td>“c”</td>
<td>$P_{W,Y} = P_s \frac{C_{RA} \delta_{Z2}}{g}$ in y direction</td>
</tr>
<tr>
<td></td>
<td>“d”</td>
<td>$P_{W,Z} = P_s \frac{C_{RA} \delta_{Z2}}{g}$ in z direction</td>
</tr>
</tbody>
</table>
2.3 Plating subjected to lateral pressure

2.3.1 The hull girder normal stresses to be considered for the strength check of plating subjected to lateral pressure are to be determined using the formula:

\[\sigma_{x1} = 10^5 \frac{\max(M_{110};M_{11s})}{I_y} (z - N) \]

2.4 Structural members subjected to lateral pressure

2.4.1 The hull girder normal stresses to be considered for the yielding check of structural members subjected to lateral pressure and contributing to the longitudinal strength are given in Tab 3.

3 Strength check in testing conditions

3.1 General

3.1.1 The requirements of this Section provide the minimum scantlings of platings and structural members of compartments subjected to testing conditions.

Where the test conditions are subject to induce additional loads, the strength check is to be carried out by direct calculation.

3.2 Lateral pressure in testing conditions

3.2.1 The lateral pressure \((p_T) \) in testing conditions is taken equal to:

- \(p_T - p_s \) for bottom and side structures, if the testing is carried out afloat
- \(p_T \) otherwise,

where \(p_s \) is the still water pressure defined in Ch 3, Sec 4, [2.1] for the draught \(T_1 \) at which the testing is carried out.

If \(T_1 \) is not defined by the Designer, it may be taken equal to 0.15 T.

3.3 Plating

3.3.1 The net thickness, in mm, of plating of compartments or structures subjected to testing conditions is not to be less than:

\[t = 14, 9C_s C_{st} \frac{P_T}{R_y} \]

3.4 Structural members

3.4.1 The net section modulus \(w \), in \(\text{cm}^3 \), and the net shear sectional area \(A_{sh} \), in \(\text{cm}^2 \), of structural members of compartments or structures subjected to testing conditions are not to be less than the values obtained from the formulae given in Tab 5.

Table 3: Hull girder normal stresses - Structural members subjected to lateral pressure

<table>
<thead>
<tr>
<th>Condition</th>
<th>(\sigma_{x1}), in N/mm²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lateral pressure applied on the side opposite to the structural member, with respect to the plating</td>
<td>(z \geq N) in general; (z < N) for ordinary stiffeners simply supported at both ends</td>
</tr>
<tr>
<td></td>
<td>(10^5 \frac{M_{110}(z - N)}{I_y})</td>
</tr>
<tr>
<td></td>
<td>(z \geq N) for ordinary stiffeners simply supported at both ends</td>
</tr>
<tr>
<td></td>
<td>(10^5 \frac{M_{110}(z - N)}{I_y})</td>
</tr>
<tr>
<td>Lateral pressure applied on the same side as the structural member</td>
<td>(z \geq N) in general; (z < N) for ordinary stiffeners simply supported at both ends</td>
</tr>
<tr>
<td></td>
<td>(10^5 \frac{M_{110}(z - N)}{I_y})</td>
</tr>
<tr>
<td></td>
<td>(z < N) in general; (z \geq N) for ordinary stiffeners simply supported at both ends</td>
</tr>
<tr>
<td></td>
<td>(10^5 \frac{M_{110}(z - N)}{I_y})</td>
</tr>
</tbody>
</table>
Table 4: Hull plating net scantlings

<table>
<thead>
<tr>
<th>Item</th>
<th>Transverse framing</th>
<th>Longitudinal framing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bottom plating</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$t = \max (t_1, t_2)$</td>
<td>$t_1 = 1,85 + 0,033 L k^{0,5} + 3,6 s$</td>
<td>$t = \max (t_1, t_2)$</td>
</tr>
<tr>
<td>$t_2 = 17, 2C, C_s$</td>
<td>$\frac{P}{\lambda_s R_s}$</td>
<td>$t_2 = 14, 9C, C_s$</td>
</tr>
<tr>
<td>Side plating</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$t = \max (t_1, t_2)$</td>
<td>$t_1 = 1,68 + 0,0025 L k^{0,5} + 3,6 s$</td>
<td>$t = \max (t_1, t_2)$</td>
</tr>
<tr>
<td>$t_2 = 17, 2C, C_s$</td>
<td>$\frac{P}{\lambda_s R_s}$</td>
<td>$t_2 = 14, 9C, C_s$</td>
</tr>
<tr>
<td>Deck plating</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$t = \max (t_1, t_2)$</td>
<td>$t_1 = 0,9 + 0,034 L k^{0,5} + 3,6 s$</td>
<td>$t = \max (t_1, t_2)$</td>
</tr>
<tr>
<td>$t_2 = 17, 2C, C_s$</td>
<td>$\frac{P}{\lambda_s R_s}$</td>
<td>$t_2 = 14, 9C, C_s$</td>
</tr>
</tbody>
</table>

Note 1:

$$\lambda_s = \sqrt{1 - 0,95 (\frac{\sigma_t}{R_s})^2 + 0,225 \frac{\sigma_t}{R_s}}$$

$$\lambda_t = 1 - 0,89 \frac{\sigma_t}{R_s}$$

Table 5: Strength check of stiffeners in testing conditions

<table>
<thead>
<tr>
<th>Stiffener</th>
<th>w</th>
<th>A_{sh}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertical stiffeners</td>
<td>$w = \gamma_{te} \lambda_s \beta_p \frac{P_x}{m R_s} \alpha \sigma^2 10^3$</td>
<td>$A_{sh} = 10 \gamma_{te} \lambda_s \beta_p \frac{P_x}{R_s} \eta \alpha \sigma$</td>
</tr>
<tr>
<td>(other than side frames of single hull)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Side frames (single hull)</td>
<td>$w = \gamma_{te} \lambda_s \beta_p \left(\lambda_t \sigma_t \epsilon^2 + 1, 45 \lambda_t \sigma_t \epsilon \sqrt{\frac{\sigma_t}{R_s}} \right) 10^3$</td>
<td>$A_{sh} = 10 \gamma_{te} \lambda_s \beta_p \frac{P_x}{R_s} \eta \alpha \sigma$</td>
</tr>
<tr>
<td>Transverse stiffeners</td>
<td>$w = \gamma_{te} \lambda_s \beta_p \frac{P_x}{m R_s} \alpha \sigma^2 10^3$</td>
<td>$A_{sh} = 10 \gamma_{te} \lambda_s \beta_p \frac{P_x}{R_s} \eta \alpha \sigma$</td>
</tr>
<tr>
<td>Longitudinal stiffeners</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note 1:

- a: for ordinary stiffeners and floors; $a = s$
- η_1: for ordinary stiffeners; $\eta_1 = \eta$
- η_2: for primary supporting members; $\eta_2 = 1$
- λ_s: $\lambda_s = 0,08$
- λ_t: $\lambda_t = 0$
- ϵ: Floor span, in m
- P_x: Floor lateral pressure in testing conditions, in kN/m²
- λ_{AW}: Coefficient to be taken equal to:
 - in transverse framing: $\lambda_{AW} = 0,08$
 - in combination framing: $\lambda_{AW} = 0$

Table 6: Hull structural member net scantlings

<table>
<thead>
<tr>
<th>Item</th>
<th>Scantlings (1)</th>
<th>Minimum web thickness</th>
</tr>
</thead>
</table>
| Bottom longitudinals | $w = \frac{\gamma_{te} \beta_p}{m(t_2 + \gamma_{te} \sigma_{st})} \epsilon \sigma^2 10^3$ | • for $L < 120$ m: $t = 1,63 + 0,004 L k^{0,5} + 4,5 s$
| Side longitudinals | $A_{sh} = 10 \gamma_{te} \beta_p \frac{P_x}{R_s} \eta \alpha \sigma$ | • for $L \geq 120$ m: $t = 3,9 k^{0,5} + s$
| Deck longitudinals | $w = \frac{\gamma_{te} \beta_p}{m(t_2 + \gamma_{te} \sigma_{st})} \epsilon \sigma^2 10^3$ | • for $L < 120$ m: $t = 1,63 + 0,004 L k^{0,5} + 4,5 s$
| | $A_{sh} = 10 \gamma_{te} \beta_p \frac{P_x}{R_s} \eta \alpha \sigma$ | • for $L \geq 120$ m: $t = 3,9 k^{0,5} + s$
| Deck beams | $w = \frac{\gamma_{te} \beta_p}{m(t_2 + \gamma_{te} \sigma_{st})} \epsilon \sigma^2 10^3$ | • for $L < 120$ m: $t = 1,63 + 0,004 L k^{0,5} + 4,5 s$
| | $A_{sh} = 10 \gamma_{te} \beta_p \frac{P_x}{R_s} \eta \alpha \sigma$ | • for $L \geq 120$ m: $t = 3,9 k^{0,5} + s$
<table>
<thead>
<tr>
<th>Item</th>
<th>Scantlings (1)</th>
<th>Minimum web thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Floors</td>
<td>$w = \gamma y \beta p_{mR_y} a \ell^2 10^3$</td>
<td>$t = 3,8 + 0,016 L^{0.5}$</td>
</tr>
<tr>
<td>Bottom transverses</td>
<td>$A_{sh} = 10 \gamma y \beta p_{mR_y} a \ell$</td>
<td></td>
</tr>
<tr>
<td>Deck transverses</td>
<td>$w = \gamma y \beta p_{mR_y} a \ell^2 10^3$</td>
<td>$t = 3,8 + 0,016 L^{0.5}$</td>
</tr>
<tr>
<td>Side frames</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\text{if } \ell_0 \leq \ell$</td>
<td>$w = \gamma y \beta p_{mR_y} \frac{s}{mR_y} (6 \ell \ell_0^2 + 1, 45 \lambda_\alpha p_\ell \ell_0^2) 10^3$</td>
<td></td>
</tr>
<tr>
<td>$A_{sh} = 68 \gamma y \beta p_{mR_y} \eta \ell_0$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\text{if } \ell_0 > \ell$</td>
<td>$w = \gamma y \beta p_{mR_y} \frac{s}{mR_y} (\lambda_\alpha p_\ell \ell_0^2 + 1, 45 \lambda_\alpha p_\ell \ell_0^2) 10^3$</td>
<td></td>
</tr>
<tr>
<td>$A_{sh} = 10 \gamma y \beta \lambda_\alpha p_{R_y} \eta s \ell_0$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Side web frames</td>
<td>$w = 6 \gamma y \beta p_{mR_y} \frac{s}{mR_y} S_{\ell_0}^2 10^3$</td>
<td>$t = 3,8 + 0,016 L^{0.5}$</td>
</tr>
<tr>
<td>Side transverse</td>
<td>$A_{sh} = 68 \gamma y \beta p_{mR_y} S_{\ell_0}$</td>
<td></td>
</tr>
<tr>
<td>$\text{if } \ell_0 \leq \ell$</td>
<td>$w = \gamma y \beta p_{mR_y} \frac{S}{mR_y} \ell S_\ell^2 10^3$</td>
<td>$t = 3,8 + 0,016 L^{0.5}$</td>
</tr>
<tr>
<td>$A_{sh} = 10 \gamma y \beta p_{R_y} S_\ell$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\text{if } \ell_0 > \ell$</td>
<td>$w = \gamma y \beta p_{mR_y} \frac{S}{mR_y} \ell S_\ell^2 10^3$</td>
<td>$t = 3,8 + 0,016 L^{0.5}$</td>
</tr>
<tr>
<td>Side stringers</td>
<td>$w = \gamma y \beta p_{mR_y} \ell S_{\ell_0}^2 10^3$</td>
<td>$t = 3,8 + 0,016 L^{0.5}$</td>
</tr>
<tr>
<td>$A_{sh} = 10 \gamma y \beta p_{R_y} S_\ell$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bottom girders</td>
<td>$w = \gamma y \beta p_{mR_y} \frac{b}{m(R_y - \gamma y \sigma_{x_1})} b \ell^2 10^3$</td>
<td>$t = 3,8 + 0,016 L^{0.5}$</td>
</tr>
<tr>
<td>$A_{sh} = 10 \gamma y \beta p_{R_y} b \ell$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1) w : Net section modulus, in cm3

A_{sh} : Net shear sectional area, in cm2.

Note 1:

- **a** : Primary supporting member spacing, in m:
 - $a = s$ for floors
 - $a = S$ for other primary supporting members
- p_ℓ : Floor design load, in kN/m2, to be determined in compliance with [2.1]
- ℓ_0 : Span parameter, in m: $\ell_0 = p_\ell / 9.81$
- p_ℓ : Total pressure, in kN/m2, at the lower end of the stiffener
- ℓ_ℓ : Floor span, in m
- λ_α : In transverse framing system: $\lambda_\alpha = 0.08$
 - In combination framing system: $\lambda_\alpha = 0$
- b : Bottom girder parameter, in m, to be obtained from the following formula:
 $$b = \frac{B_1 - n_\ell S_{S_\ell}}{2(n_\ell + 1)} + \frac{S_{S_\ell}}{2}$$
- n_ℓ : Number of engines
- S_{S_ℓ} : Spacing of longitudinal girders under main engines
- B_1 : Width of the machinery space, in m.
5 Bottom structure

5.1 General

5.1.1 Where the hull is shaped, the bottom is to be transversely framed. In all other cases, it may be transversely or longitudinally framed.

5.2 Transversely framed bottom

5.2.1 Arrangement of floors
Where the bottom in the machinery space is transversely framed, floors are to be arranged at every frame. Furthermore, reinforced floors are to be fitted in way of important machinery and at the end of keelsons not extending up to the transverse bulkhead.
The floors are to be fitted with welded face plates, which are preferably to be symmetrical. Flanges are forbidden.

5.3 Longitudinally framed bottom

5.3.1 Arrangement of transverses
Where the bottom in the machinery space is longitudinally framed, transverses are to be arranged every 4 frame spacings. Additional transverses are to be fitted in way of important machinery.
The bottom transverses are to be fitted with welded face plates, which are preferably to be symmetrical. Flanges are forbidden.

6 Side structure

6.1 General

6.1.1 The type of side framing in machinery spaces is generally to be the same as that adopted in the adjacent areas. In any case, it is to be continuous over the full length of the machinery space.

6.2 Transversely framed side

6.2.1 Web frames
In vessels built on transverse system, web frames are to be aligned with floors. One is preferably to be located in way of the forward end and another in way of the after end of the machinery casing.
The mean web frame spacing in the machinery space is in general not more than 5 frame spacings.

6.2.2 Side stringers
In the machinery space, where the mean value of the depth exceeds 2 m, a side stringer is generally to be fitted at half the vessel’s depth. Its scantlings are to be the same as those of the web frames.
The plate connecting the stringer to the shell plating is to be an intercostal plate between web frames.
Stringer strength continuity in way of the web frames is to be obtained by a suitable assembly.
Stringers located in fuel bunkers are determined in the same way as bulkhead stringers.
In the case a side stringer is fitted in the engine room, it is to be continued behind the aft bulkhead by a bracket at least over two frame spacings.

6.3 Longitudinally framed side

6.3.1 Extension of the hull longitudinal structure within the machinery space
For vessels where the machinery space is located aft and where the side is longitudinally framed, the longitudinal structure is preferably to extend for the full length of the machinery space.
In any event, the longitudinal structure is to be maintained for at least 0.3 times the length of the machinery space, calculated from the forward bulkhead of the latter, and abrupt structural discontinuities between longitudinally and transversely framed structures are to be avoided.

6.3.2 Side transverses
Side transverses are to be aligned with floors. One is preferably to be located in way of the forward end and another in way of the after end of the machinery casing.
The side transverse spacing is to be not greater than 4 frame spacings.

7 Machinery casing

7.1 Arrangement

7.1.1 Ordinary stiffener spacing
Ordinary stiffeners are to be located:
- at each frame, in longitudinal bulkheads
- at a distance of not more than 750 mm, in transverse bulkheads.

7.2 Openings

7.2.1 General
All machinery space openings, which are to comply with the requirements in Ch 6, Sec 7, [7], are to be enclosed in a steel casing leading to the highest open deck. Casings are to be reinforced at the ends by deck transverses and girders associated to pillars.
In the case of large openings, the arrangement of cross-ties as a continuation of deck beams may be required.

7.2.2 Access doors
Access doors to casings are to comply with Ch 6, Sec 7, [7.4].

7.3 Scantlings

7.3.1 Design loads
Design loads for machinery casing scantling are to be determined as stated under Ch 6, Sec 4, [3].

7.3.2 Plating and ordinary stiffeners
The net scantlings of plating and ordinary stiffeners are to be not less than those obtained according to the applicable requirements in Ch 6, Sec 4.
8 Engine foundation

8.1 Arrangement

8.1.1 General
The scantlings of seatings of main engines and thrust bearings are to be adequate in relation to the weight and power of engines and the static and dynamic forces transmitted by the propulsive installation.

8.1.2 Floors
Floor strength continuity is to be obtained as shown in Fig 1 or Fig 2, or according to any other method considered equivalent by the Society.

8.2 Scantlings

8.2.1 The net scantlings of the structural elements in way of the seatings of engines are to be determined by the engine manufacturer. They are to be checked on the basis of justificatory calculations supplied by the engine manufacturer. If these calculations are not supplied, the net scantlings of the structural elements in way of the seatings of engines are to be not less than those obtained from the formulae in Tab 7.

8.2.2 Longitudinal girders
The net scantlings of longitudinal girders in way of engine foundation are not to be less than the values derived from Tab 7.

The section modulus of longitudinal girders in way of engine foundation may be reduced when additional bottom girders are provided over the full length of the engine room.

8.2.3 Floors
The net scantlings of floors in way of the engine foundation, are not to be less than the values derived from Tab 7.

The section modulus of the floors in the section A-A (see Fig 1 and Fig 2) is to be at least 0.6 times that determined according to the formula given in Tab 7.

8.2.4 Bottom plating
The minimum net thickness of bottom plating in way of engine foundation is given in Tab 7.

8.2.5 Longitudinal girders
The longitudinal girders under the engine are to extend over the full length of the engine room and extend beyond the bulkheads, at least for one frame spacing, by means of thick brackets.

Where such an arrangement is not practicable aft, because of the lines, the girders may end at a deep floor strengthened to that effect and in way of which the frames are to be fitted.

As a rule, longitudinal girders under the engine are to be continuous and the floors are to be intercostal, except for large size engine rooms. Strength continuity is anyhow to be ensured over the full girder length. More specially, cutouts and other discontinuities are to be carefully compensated.

Table 7: Net scantlings of the structural elements in way of engine foundation

<table>
<thead>
<tr>
<th>Foundation item</th>
<th>Minimum value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cross-sectional area, in cm², of each bedplate of the seatings</td>
<td>(S = 40 + 70 \frac{P}{n_L}).</td>
</tr>
<tr>
<td>Thickness, in mm, of each bedplate of the seatings</td>
<td>(t = \sqrt{\frac{240 + 175 \frac{P}{n_L}}{1}}).</td>
</tr>
<tr>
<td>Web thickness, in mm, of girders fitted in way of each bedplate of the seatings</td>
<td>(t = \sqrt{\frac{95 + 65 \frac{P}{n_L}}{1}}).</td>
</tr>
<tr>
<td>Section modulus of floors</td>
<td>(w = \frac{P}{m^2 k_s} \frac{P}{n_L}).</td>
</tr>
<tr>
<td>Web thickness, in mm, of transverse members fitted in way of bedplates of the seating</td>
<td>(t = \sqrt{\frac{55 + 40 \frac{P}{n_L}}{1}}).</td>
</tr>
<tr>
<td>Thickness of bottom plating</td>
<td>(t = t_0 + 2, \frac{P}{n_h}).</td>
</tr>
</tbody>
</table>

Note 1:
- \(P \): Maximum power, in kW, of the engine
- \(n_r \): Number of revolutions per minute of the engine shaft at power equal to \(P \)
- \(L_e \): Effective length, in m, of the engine foundation plate required for bolting the engine to the seating, as specified by the engine manufacturer
- \(t_0 \): Net thickness of the bottom plating, in mm, in the central part.
Figure 1: Floor in way of main engine seating: 1st version

Figure 2: Floor in way of main engine seating: 2nd version
SECTION 4 SUPERSTRUCTURES AND DECKHOUSES

Symbols

- \(t \): Net thickness, in mm, of plating
- \(s \): Spacing, in m, of ordinary stiffeners
- \(S \): Span, in m, of primary supporting members
- \(\ell \): Span correction coefficient defined in Ch 2, Sec 4, [3.2] or Ch 2, Sec 4, [4.2]
- \(p \): Design pressure, in kN/m², defined in [3]
- \(\beta_b, \beta_s \): Span correction coefficients defined in Ch 2, Sec 4, [5.2]
- \(w \): Net section modulus, in cm³
- \(A_{sh} \): Net shear sectional area, in cm²
- \(k \): Material factor defined in Ch 2, Sec 3, [2.4] and Ch 2, Sec 3, [3.4]
- \(R_y \): Minimum yield stress, in N/mm², of the material, to be taken equal to \(235/k \) N/mm², unless otherwise specified
- \(R_{cut} \): Minimum yield stress, in N/mm², of the material, defined in Ch 2, Sec 3, [2]
- \(\gamma_k \): Partial safety factor covering uncertainties regarding resistance, defined in Tab 6
- \(\gamma_m \): Partial safety factor covering uncertainties regarding material, defined in Tab 6
- \(E \): Young’s modulus, in N/mm²:
 - for steels in general: \(E = 2,06 \times 10^5 \) N/mm²
 - for stainless steels: \(E = 1,95 \times 10^5 \) N/mm²
 - for aluminium alloys: \(E = 7,0 \times 10^4 \) N/mm²
- \(v \): Poisson’s ratio. Unless otherwise specified, a value of 0.3 is to be taken into account
- \(\sigma_{x1} \): Hull girder normal stress, in N/mm², defined in [4]
- \(C_{fa} \): Combination factor, to be taken equal to
 - \(C_{fa} = 0.7 \) for load case “c”
 - \(C_{fa} = 1.0 \) for load case “d”
- \(a_{z1}, a_{z2} \): Reference values of the accelerations in the upright vessel condition, defined in Ch 3, Sec 3, [2.3], calculated in way of the centre of gravity:
 - of the compartment, in general
 - of any dry unit cargo, in the case of this type of cargo
- \(H \): Wave height defined in Ch 3, Sec 1, [5.1]
- \(n \): Navigation coefficient defined in Ch 3, Sec 1, [5.2]
- \(m \): Boundary coefficient for stiffeners taken, in general, equal to:
 - \(m = 12 \) for ordinary stiffeners
 - \(m = 8 \) for primary supporting members.
 Other values of \(m \) may be considered, on a case by case basis, for other boundary conditions
- \(I_k \): Net moment of inertia, in cm⁴, of the hull transverse section around its horizontal neutral axis, to be calculated according to Ch 4, Sec 1
- \(M_{TH} \): Total vertical bending moment in hogging condition, in kN.m, to be determined according to Ch 3, Sec 2, [5]
- \(M_{TS} \): Total vertical bending moment in sagging condition, in kN.m, to be determined according to Ch 3, Sec 2, [5]
- \(N \): Z co-ordinate, in m, of the centre of gravity of the hull transverse section
- \(z \): Z co-ordinate, in m, of the calculation point of a structural element.
- \(C_a \): Aspect ratio:
 \[
 C_a = 1, 21 \left(\frac{1 + 0,33 \left(\frac{s}{\ell} \right)^{0.5}}{\frac{s}{\ell}} \right) - 0, 69 \left(\frac{s}{\ell} \right)^{0.5} \leq 1
 \]
- \(C_r \): Coefficient of curvature:
 \[
 C_r = 1 - 0, 5 \left(\frac{s}{r} \right) \geq 0, 5
 \]
 where:
- \(r \): Radius of curvature, in m
- \(I_k \): Net moment of inertia, in cm⁴, of the hull transverse section around its horizontal neutral axis, to be calculated according to Ch 4, Sec 1
- \(\alpha \): Aspect ratio defined in Ch 6, Sec 1, [5.1.1]
- \(b \): Length, in m, of loaded side of the plate panel
- \(\psi \): Edge stress ratio defined in Ch 5, Sec 1, [4.1.2]
- \(F_1 \): Correction factor defined in Ch 6, Sec 1, [5.2.1]
- \(K_1 \): Factor defined in Ch 6, Sec 1, [5.3.1].
1 General

1.1 Application

1.1.1 The requirements of this Section apply to the scantlings of plating and associated structures of front, side and aft bulkheads and decks of superstructures and deckhouses, which may or may not contribute to the longitudinal strength.

As to the requirements which are not explicitly dealt with in the present Section, refer to the previous Chapters.

1.2 Definitions

1.2.1 Superstructures and deckhouses

Superstructures and deckhouses are defined in Ch 1, Sec 2, [2.8] and Ch 1, Sec 2, [2.9], respectively.

A closed deckhouse is a construction consisting of strong bulkheads permanently secured to the deck and made watertight. The openings are to be fitted with efficient weathertight means of closing.

Superstructures and deckhouses may be:
• closed, where they are enclosed by front, side and aft bulkheads complying with the requirements of this Section, the openings of which are fitted with weathertight means of closing
• open, where they are not enclosed.

1.2.2 Superstructures and deckhouses contributing to the longitudinal strength

A superstructure or deckhouse may be considered as contributing to the longitudinal strength if its deck satisfies the basic criteria given in Ch 4, Sec 1, [3.2].

1.2.3 Tiers of superstructures and deckhouses

The lowest tier is normally that which is directly situated above the strength deck defined in Ch 1, Sec 2, [2.10].

The second tier is that located immediately above the lowest tier, and so on.

2 Arrangements

2.1 Connections of superstructures and deckhouses with the hull structure

2.1.1 Superstructure and deckhouse frames are to be fitted as far as practicable as extensions of those underlying and are to be effectively connected to both the latter and the deck beams above.

Ends of superstructures and deckhouses are to be efficiently supported by bulkheads, diaphragms, webs or pillars.

2.1.2 Connection to the deck of corners of superstructures and deckhouses is considered by the Society on a case by case basis. Where necessary, doublers or reinforced welding may be required.

2.1.3 As a rule, the frames of sides of superstructures and deckhouses are to have the same spacing as the beams of the supporting deck.

Web frames are to be arranged to support the sides and ends of superstructures and deckhouses.

2.1.4 The side plating at ends of superstructures is to be tapered into the bulwark or sheerstrake of the strength deck.

Where a raised deck is fitted, this arrangement is to extend over at least 3 frame spacings.

2.2 Gastight bulkheads

2.2.1 The accommodation shall be separated from engine rooms, boiler rooms and holds by gastight bulkheads.

2.3 Local reinforcements

2.3.1 Local reinforcements are to be foreseen in way of areas supporting cars or ladders.

3 Design loads

3.1 Sides and bulkheads

3.1.1 The lateral pressure to be used for the determination of scantlings of structure of sides and bulkheads of superstructures, deckhouses and machinery casing, in kN/m², is given in Tab 1.

Table 1: Lateral pressure on sides and bulkheads

<table>
<thead>
<tr>
<th>Navigation notation</th>
<th>(p), in kN/m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{IN}(0,6 < x \leq 2))</td>
<td>(2 + 0,3 n^{0.5})</td>
</tr>
<tr>
<td>(\text{IN}(0,6), \text{IN}(0))</td>
<td>(2 + 0,25 n)</td>
</tr>
</tbody>
</table>

3.2 Pressure on decks

3.2.1 Pressure due to load carried on deck

The pressure due to load carried on decks, in kN/m², is given by the formula:

\[p = p_s + \gamma_{w2} p_w \]

where:

\(p_s \) : Still water pressure, in kN/m², transmitted to the deck structure, to be defined by the Designer. In general, \(p_s \) is not be taken less than the values given in Tab 2 or Tab 3

\(\gamma_{w2} \) : Partial safety factor covering uncertainties regarding wave pressure:

\[\gamma_{w2}=1,0 \quad \text{for } H = 0,6 \]

\[\gamma_{w2}=1,2 \quad \text{for } H > 0,6 \]

\(p_w \) : Inertial pressure, in kN/m² as specified in Tab 4.
4 Hull girder normal stresses

4.1 Plating subjected to lateral loads

4.1.1 The hull girder normal stresses to be considered for the strength check of plating contributing to the longitudinal strength are to be determined using the formula:

$$\sigma_{X1} = 10^5 \frac{\text{MAX}(M_{111}, M_{122}, M_{222})}{I_Y} (z - N)$$

4.2 Structural members subjected to lateral loads

4.2.1 The hull girder normal stresses to be considered for the yielding check of structural members contributing to the longitudinal strength are given in Tab 7.

Table 5 : Hull girder normal compression stresses

<table>
<thead>
<tr>
<th>Condition</th>
<th>(\sigma_{X1}, \text{in N/mm}^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(z \geq N)</td>
<td>(10^5 \frac{M_{111}(z - N)}{I_Y})</td>
</tr>
<tr>
<td>(z < N)</td>
<td>(10^5 \frac{M_{111}(z - N)}{I_Y})</td>
</tr>
</tbody>
</table>

4.3 Hull girder normal compression stresses

4.3.1 The hull girder normal stresses to be considered for the buckling check of plating and structural members which contributes to the longitudinal strength are given in Tab 5.

5 Scantlings

5.1 Net scantlings

5.1.1 All scantlings referred to in this Section are net scantlings, i.e. they do not include any margin for corrosion. The gross scantlings are obtained as specified in Ch 2, Sec 5, [2].

5.2 Partial safety factors

5.2.1 The partial safety factors \(\gamma_k\) and \(\gamma_m\) to be considered for the checking of the superstructure and deckhouse structures are specified in Tab 6.

Table 7 : Hull girder normal stresses

<table>
<thead>
<tr>
<th>Structural members subjected to lateral loads</th>
</tr>
</thead>
<tbody>
<tr>
<td>Condition</td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td>Lateral pressure applied on the side opposite to the structural member, with respect to the plating</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Lateral pressure applied on the side opposite to the structural member</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Lateral pressure applied on the same side as the structural member</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Table 8: Net scantlings for non-contributing superstructures and deckhouses

<table>
<thead>
<tr>
<th>Item</th>
<th>Parameter</th>
<th>Scantling</th>
</tr>
</thead>
</table>
| Plating of sides | thickness, in mm | \(t = \max (t_1 ; t_2) \) \[
\begin{align*}
 t_1 &= 3,5 + 0,01 \, L \, k^{0,5} \\
 t_2 &= 11 C_s \, s \, \left(\frac{120 P}{q} \right) \, R_y
\end{align*} \]
| Plating of aft end bulkheads | | |
| Plating of not exposed deck | | |
| Plating of exposed decks | thickness, in mm | \(t = \max (t_1 ; t_2) \) \[
\begin{align*}
 t_1 &= 4 + 0,01 \, L \, k^{0,5} \\
 t_2 &= 14,9 C_s \, s \, \left(\frac{120 P}{q} \right) \, R_y
\end{align*} \]
| Plating of front bulkheads | | |
| Ordinary stiffeners | section modulus, in cm³ | \(w = \frac{k_1 \gamma_1 \gamma_m \gamma_p \gamma_m}{R_y} \, s^2 \, 10^3 \)
| Primary supporting members | section modulus, in cm³ | \(w = \frac{k_1 \gamma_1 \gamma_m \gamma_p \gamma_m}{R_y} \, s^2 \, 10^3 \)

Note 1:

- \(k_1 \) : in general: \(k_1 = 1 \)
- for vertical stiffeners: \(k_1 = 1 + 0,1 \, n_t \)
- \(n_t \) : Number of tiers above the tier considered.

Table 9: Plating net thickness, in mm, for contributing superstructures and deckhouses

<table>
<thead>
<tr>
<th>Item</th>
<th>Transverse framing</th>
<th>Longitudinal framing</th>
</tr>
</thead>
</table>
| Side plating | \(t = \max (t_1 ; t_2) \) | \(t = \max (t_1 ; t_2) \) \[
\begin{align*}
 t_1 &= 1,68 + 0,025 \, L \, k^{0,5} + 3,6 \, s \\
 t_2 &= 17,2 \, C_s \, s \, \left(\frac{120 P}{q} \right) \, \lambda \, R_y
\end{align*} \]
| Deck plating | \(t = \max (t_1 ; t_2) \) | \(t = \max (t_1 ; t_2) \) \[
\begin{align*}
 t_1 &= 0,9 + 0,034 \, L \, k^{0,5} + 3,6 \, s \\
 t_2 &= 17,2 \, C_s \, s \, \left(\frac{120 P}{q} \right) \, \lambda \, R_y
\end{align*} \]
| Plating of aft end bulkheads | \(t = \max (t_1 ; t_2) \) | \(t = \max (t_1 ; t_2) \) \[
\begin{align*}
 t_1 &= 3,5 + 0,01 \, L \, k^{0,5} \\
 t_2 &= 14,9 C_s \, s \, \left(\frac{120 P}{q} \right) \, R_y
\end{align*} \]
| Plating of front bulkheads | \(t = \max (t_1 ; t_2) \) | \(t = \max (t_1 ; t_2) \) \[
\begin{align*}
 t_1 &= 4 + 0,01 \, L \, k^{0,5} \\
 t_2 &= 14,9 C_s \, s \, \left(\frac{120 P}{q} \right) \, R_y
\end{align*} \]

Note 1:

- \(\lambda_s = \sqrt{1 - 0,95 \left(\frac{\sigma_{s1} \, \gamma_m}{R_y} \right)^2 - 0,225 \gamma_m \, \sigma_{s1}} \)
- \(\lambda_t = 1 - 0,89 \gamma_m \, \sigma_{s1} \)
- \(\sigma_{s1} \) : Hull girder normal stress, in N/mm², to be determined according to [4.1].
5.3 Scantling requirements

5.3.1 General
The Society may ask additional arrangements deemed necessary in order to keep, in acceptable limits, the level of stresses liable to occur in the superstructure structural members.

5.3.2 Web plating of ordinary stiffeners
The net thickness, in mm, of the web plating of ordinary stiffeners is not to be less than:
- for \(L < 120 \text{ m} \): \(t = 1,63 + 0,004 L^{0.5} + 4,5 \) s
- for \(L \geq 120 \text{ m} \): \(t = 3,9^{0.5} + s \)

5.3.3 Web plating of primary supporting members
The net thickness, in mm, of plating which forms the web of primary supporting members is to be not less than the value obtained from the following formula:
\[
t_3 = 3,8 + 0,016 L^{0.5}
\]

5.3.4 Superstructures and deckhouses not contributing to the longitudinal strength
The net scantlings of superstructures and deckhouses not contributing to the longitudinal strength are to be derived from formulae given in Tab 8.

5.3.5 Superstructures and deckhouses contributing to the longitudinal strength
The net scantlings of superstructures contributing to the longitudinal strength are to be not less than those determined in accordance with Tab 9 and Tab 10.

5.4 Buckling strength check

5.4.1 The net thicknesses, in mm, of plating contributing to hull girder strength are to comply with the following formulae:
\[
t_1 = \frac{b}{\pi q} \left(\frac{12 \pi^{2} \gamma_{m} \sigma_{b} (1-v^{2})}{E_{m} F_{b}} \right)^{1/3} \text{ for } \sigma_{b} \leq \frac{R_{\text{eff}}}{2}
\]
\[
t_1 = \frac{b}{\pi q} \left(\frac{3 R_{\text{eff}}^{3} (1-v^{2})}{E_{m} F_{b} (R_{\text{eff}}+\gamma_{m} \sigma_{b})} \right)^{1/3} \text{ for } \sigma_{b} > \frac{R_{\text{eff}}}{2}
\]
where:
\(\sigma_{b} \) : Hull girder normal compression stress taken equal to:
\(\sigma_{b} = \sigma_{x_{1}} \)
\(\sigma_{x_{1}} \) : Maximum hull girder normal compression stress on the plate panel determined according to [4.3].

Buckling strength may be checked in compliance with Ch 2, Sec 6, at the Society’s discretion.

6 Additional requirements applicable to movable wheelhouses

6.1 General

6.1.1 The structures of movable wheelhouses are to be checked in low and high position.

6.1.2 The lifting mechanism is to be designed in such a way that exceeding the terminal positions is not possible.

6.1.3 Mechanical locking devices are to be fitted in addition to hydraulic systems.

6.1.4 The supports or guide of movable wheelhouses, connections with the deck, under deck reinforcements and locking devices are to be checked considering loads due to list and wind action (see Pt D, Ch 1, Sec 6, [7.4], for calculation of acceleration) as well as inertial loads induced by the vessel motion (see Ch 3, Sec 3).

Unless otherwise determined by stability calculations, the angle of list is not to be taken less than 12°.

6.1.5 The wheelhouse can be fixed in different positions along the vertical axis, and the access to the wheelhouse shall be possible at any position.

During the movement of the wheelhouse, operations carried out from the wheelhouse shall not be hindered.

6.1.6 The safety of persons on board is to be guaranteed at any position of the wheelhouse.
Movements of the wheelhouse are to be signalled by optical and acoustic means.

6.1.7 In the case of emergency, it should be possible to lower the wheelhouse by means independent of the power drive. Emergency lowering of the wheelhouse is to be effected by its own weight and is to be smooth and controllable. It should be possible from both inside and outside the wheelhouse and can be effected by one person under all conditions.

6.2 Arrangement

6.2.1 The hoisting mechanism is to be capable to hoist at least 1.5 times the weight of the wheelhouse fully equipped and manned.

6.2.2 The feed cables for systems inside the wheelhouse are to be arranged in such a way as to exclude the possibility of mechanical damage to them.

7 Elastic bedding of deckhouses

7.1 General

7.1.1 The structural members of elastically bedded deckhouses may, in general, be dimensioned in accordance with [5].

7.1.2 Strength calculations for the load bearing rails, elastic elements and antilift-off devices as well as for supporting structure of the deckhouse bottom and the hull are to be carried out assuming the following loads:

- vertical loads: \(P = 1.2 \, G \)
- horizontal loads: \(P = 0.3 \, G \)

where:

\[G \] : Total weight of the complete deckhouse, outfit and equipment included.

Additional loads due to vessel’s heel need not be considered, in general.
SECTION 5 HATCH COVERS

Symbols

\(t \) : Net thickness, in mm
\(s \) : Spacing of ordinary stiffeners, in m
\(S \) : Spacing of primary supporting members, in m
\(\ell \) : Span, in m, of ordinary stiffeners or primary supporting members
\(p \) : Hatch cover design load, in kN/m²
\(m \) : Boundary coefficient, to be taken, in general, equal to:
\(m = 12 \) for ordinary stiffeners
\(m = 8 \) for primary supporting members
\(w \) : Net section modulus, in cm³, of ordinary stiffeners or primary supporting members
\(A_{sh} \) : Net shear sectional area, in cm²
\(k \) : Material factor defined in Ch 2, Sec 3, [2.4] and Ch 2, Sec 3, [3.4]
\(R_y \) : Minimum yield stress, in N/mm², of the material, to be taken equal to 235/k N/mm², unless otherwise specified
\(\gamma_m \) : Partial safety factor covering uncertainties regarding material, equal to:
\(\gamma_m = 1.02 \)
\(H \) : Wave height defined in Ch 3, Sec 1, [5.1]
\(n \) : Navigation coefficient defined in Ch 3, Sec 1, [5.2]
\(a_{z1} \) : Reference values of the accelerations in the upright vessel condition, defined in Ch 3, Sec 3, [2.3], calculated in way of the centre of gravity:
- of the compartment, in general
- of any dry unit cargo, in the case of this type of cargo
\(a_{z2}, a_{z3} \) : Reference values of the accelerations in the inclined vessel condition, defined in Ch 3, Sec 3, [2.3], calculated in way of the centre of gravity:
- of the compartment, in general
- of any dry unit cargo, in the case of this type of cargo
\(C_{FA} \) : Combination factor, to be taken equal to
- \(C_{FA} = 0.7 \) for load case “c”
- \(C_{FA} = 1.0 \) for load case “d”
\(h_2 \) : Reference value, in m, of the relative motion in the inclined vessel condition in Ch 3, Sec 3, [2.2.1]

1 General

1.1 Application

1.1.1 The requirements of this Section apply to hatchways which are closed with self-bearing hatchcovers. These are to bear on coamings.

1.1.2 Hatch covers supported by hatchway beams and other supporting systems are to be considered by the Society on a case by case basis. In any case, they are to ensure the same degree of strength and weathertightness.

1.1.3 These Rules do not cover the classification of vessels with range of navigation \(\text{IN}(0) \), for which however the Rules applicable to the range of navigation \(\text{IN}(0,6) \) may be used.

1.2 Definitions

1.2.1 Weathertightness
W eathertightness is ensured when, for all the navigation conditions envisaged, the closing devices are in compliance with Ch 2, Sec 2, [1.2.7]. Systems to ensure the weathertightness are mentioned in [2.1.3].

1.2.2 Watertightness
Watertightness is ensured when, for all the navigation conditions envisaged, the closing devices are in compliance with Ch 2, Sec 2, [1.2.8].

1.3 Materials

1.3.1 Hatch covers are to be made of steel or aluminium alloy. The use of other materials is to be considered by the Society on a case by case basis.

1.4 Net scantlings

1.4.1 All scantlings referred to in this Section are net, i.e. they do not include any margin for corrosion. The gross scantlings are obtained as specified in Ch 2, Sec 5, [2].

1.5 Design loads

1.5.1 General
The design loads to be considered for the scantling of hatch covers are, on one hand, the structural weight of the items themselves, and on the other, the expected deck load, if any, defined in [1.5.2].
1.5.2 Hatch covers carrying uniform cargoes

The pressure due to uniform load carried on hatch covers, in kN/m², is given by the formula:

\[p = p_S + \gamma_{W2} p_W \]

where:

- \(p_S \): Expected hatch cover still water pressure, in kN/m², to be defined by the Designer. In any case, \(p_S \) is not to be taken less than:
 \[p_S = \max(1.5; 6 n - 1.5) \]

- \(\gamma_{W2} \): Partial safety factor covering uncertainties regarding wave pressure:
 \[\gamma_{W2} = \begin{cases} 1.0 & \text{for } H = 0.6 \\ 1.2 & \text{for } H > 0.6 \end{cases} \]

- \(p_W \): Inertial pressure, in kN/m² as specified in Tab 1

Table 1 : Load carried on deck - Inertial pressure

<table>
<thead>
<tr>
<th>Vessel condition</th>
<th>Load case</th>
<th>Inertial pressure (p_W), in kN/m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upright (positive heave motion)</td>
<td>“a”</td>
<td>No inertial pressure</td>
</tr>
<tr>
<td>“b”</td>
<td>(p_{W,2} = \frac{g a_2}{g}) in z direction</td>
<td></td>
</tr>
<tr>
<td>Inclined (negative roll angle)</td>
<td>“c”</td>
<td>(p_{W,2} = \frac{C_{a x a_2}}{g}) in y direction</td>
</tr>
<tr>
<td>“d”</td>
<td>(p_{W,2} = \frac{C_{a z a_2}}{g}) in z direction</td>
<td></td>
</tr>
</tbody>
</table>

2 Arrangements

2.1 General

2.1.1 Hatch covers on exposed decks

On vessels assigned the ranges of navigation \(\text{IN}(0.6 < x \leq 2) \) and \(\text{IN}(0.6) \), hatchways on exposed decks are to be fitted with weathertight hatchcovers of adequate strength and rigidity.

The height of the hatch coaming above the deck \(h_c \), in m, is to be such that:

\[z_c = T + h_c + 0.15 \]

where:

- \(z_c \): z-coordinate, in m, of the top of hatch coaming.

2.1.2 Hatch covers in closed superstructures

Hatch covers in closed superstructures need not be weathertight.

However, hatch covers fitted in way of ballast tanks, fuel oil tanks or other tanks are to be watertight.

2.1.3 Weathertightness of hatch covers

The hatchcover tightness is not subjected to a test. Tightness may be obtained by fitting of flanged metal hatchcovers which constitute baffles intended to prevent water penetrating into the hold below.

Hatchcovers are to have a mean slope of not less than 0.1, unless they are covered by tarpaulins. Where tarpaulins are fitted, they are to have adequate characteristics of strength and weathertightness. The tarpaulin is to be secured by means of batten, cleats and wedges.

2.1.4 Securing of hatch covers

The positioning and securing of hatch covers are to be ensured by supports or guides of efficient construction. Where steel broaches or bolts are used, their diameter is to be such that the mean shearing stress, under the action of the loads mentioned in [1.5], does not exceed 44 N/mm².

Efficient arrangements are to be made to prevent unexpected displacement or lifting of the hatchcovers.

2.1.5 The width of each bearing surface for hatch covers is to be at least 65 mm.

2.1.6 Hatch covers carrying containers

The design, construction and arrangement of hatch covers carrying containers are to be in compliance with Pt D, Ch 1, Sec 4.

2.1.7 Hatch covers carrying wheeled loads

The design, construction and arrangement of hatch covers carrying wheeled loads are to be in compliance with Pt D, Ch 1, Sec 5.

3 Scantlings

3.1 Application

3.1.1 The following scantling rules are applicable to rectangular hatch covers subjected to a uniform pressure.

In the case of hatch covers arranged with primary supporting members as a grillage, the scantlings are to be determined by direct calculations.

3.2 Plating of hatch covers

3.2.1 Minimum net thickness of steel hatch covers

In any case, the thickness of steel hatch covers is not to be less than:

- galvanized steel: 2 mm
- other cases: 3 mm.

3.2.2 Net thickness of metal hatch covers

The net thickness of metal hatch covers subjected to lateral uniform load is not to be less than:

\[t = 16.35 \frac{R_y D}{\eta \gamma_{D}} \]

where:

- \(\gamma_k \): Partial safety factor covering uncertainties regarding resistance, equal to:
 \[\gamma_k = 1.20 \]
3.3 Stiffening members of hatch covers

3.3.1 Width of attached plating
The width of the attached plating is to be in compliance with Ch 2, Sec 4, [3.3] or Ch 2, Sec 4, [4.3], as applicable.

3.3.2 Minimum web thickness
The minimum thickness of the web of the stiffeners, in mm, is to be not less than the thickness of the plating of the hatch covers, given in [3.2].

3.3.3 Section modulus and shear sectional area
The net section modulus \(w \), in cm\(^3\), and the net shear sectional area \(A_{sh} \), in cm\(^2\), of self-bearing hatchcover ordinary stiffeners and primary supporting members are not to be less than those obtained from the following formulae:

\[
w = \frac{\gamma_k \gamma_m P}{mR_y} a^2 10^3 \\
A_{sh} = 10 \gamma_k \gamma_m P a^2
\]

where:
\(a \) : Stiffener spacing, in m:
\(a = s \) for ordinary stiffeners
\(a = S \) for primary supporting members

\(\gamma_k \) : Partial safety factor covering uncertainties regarding resistance, equal to:
\(\gamma_k = 1.02 \)
1 Movable decks and inner ramps

1.1 Materials

1.1.1 The movable decks and inner ramps are to be made of steel or aluminium alloys complying with the requirements of Ch 2, Sec 3. Other materials of equivalent strength may be used, subject to a case by case examination by the Society.

1.2 Net scantlings

1.2.1 As specified in Ch 2, Sec 5, [2], all scantlings referred to in this Section are net, i.e. they do not include any margin for corrosion.

The gross scantlings are to be obtained as specified in Ch 2, Sec 5, [2].

1.3 Plating

1.3.1 The net thickness of plate panels subjected to wheeled loads is not to be less than the value obtained from Pt D, Ch 1, Sec 5, [4.3], where \((nP \cdot F)\) is not to be taken less than 50 kN, with:

- \(nP\) : Number of wheels on the plate panel, taken equal to:
 - 1 in the case of a single wheel
 - the number of wheels in the case of double or triple wheels
- \(F\) : Wheeled force, in kN.

1.4 Ordinary stiffeners

1.4.1 The net section modulus and the net shear sectional area of ordinary stiffeners subjected to wheeled loads are not to be less than the value obtained from Pt D, Ch 1, Sec 5, [4.4.1].

1.5 Primary supporting members

1.5.1 General

The supporting structure of movable decks and inner ramps is to be verified through direct calculation, considering the following cases:

- movable deck stowed in upper position, empty and locked in navigation conditions
- movable deck in service, loaded, in lower position, resting on supports or supporting legs and locked in navigation conditions
- movable inner ramp in sloped position, supported by hinges at one end and by a deck at the other, with possible intermediate supports, loaded, at harbour
- movable inner ramp in horizontal position, loaded and locked, in navigation conditions.

1.5.2 Loading cases

The scantlings of the structure are to be verified in both navigation and harbour conditions for the following cases:

- loaded movable deck or inner ramp under loads according to the load distribution indicated by the Designer
- loaded movable deck or inner ramp under uniformly distributed loads corresponding to a pressure, in kN/m², taken equal to \(p_0 + p_1\)
- empty movable deck under uniformly distributed masses corresponding to a pressure, in kN/m², taken equal to \(p_0\),

where:

\[p_0 = \frac{P_p}{A_p} \]

\[p_1 = \frac{n_V P_V}{A_p} \]

\[P_p : \text{Weight of the movable deck or inner ramp, in kN} \]

\[P_V : \text{Weight of a vehicle, in kN} \]

\[n_V : \text{Maximum number of vehicles loaded on the movable deck or inner ramp} \]

\[A_p : \text{Effective area of the movable deck or inner ramp, in m²} \]

1.5.3 Lateral pressure

The lateral pressure is constituted by still water pressure and inertial pressure. The lateral pressure is to be obtained, in kN/m², from the following formula:

\[P = P_s + \gamma_{w2} P_W \]

where:

\[P_s, P_W : \text{Still water and inertial pressures transmitted to the movable deck or inner ramp structures, obtained, in kN/m², from Tab 1.} \]

\[\gamma_{w2} : \text{Partial safety factor covering uncertainties regarding wave pressure:} \]

\[\gamma_{w2} = 1,0 \text{ for } H = 0,6 \]

\[\gamma_{w2} = 1,2 \text{ for } H > 0,6 \]

\[H : \text{Wave height defined in Ch 3, Sec 1, [5.1].} \]

1.5.4 Checking criteria

It is to be checked that the combined stress \(\sigma_{VM}\) in N/mm², is in compliance with the criteria defined in Ch 5, Sec 1, [5.4.4], item c).
1.5.5 Allowable deflection
The scantlings of main stiffeners and the distribution of supports are to be such that the deflection of the movable deck or inner ramp does not exceed 5 mm/m.

1.6 Supports, suspensions and locking devices

1.6.1 Scantlings of supports and wire suspensions are to be determined by direct calculation on the basis of the loads in [1.5.2] and [1.5.3], taking account of a safety factor at least equal to 5.

1.6.2 It is to be checked that the combined stress \(\sigma_{\text{VAD}} \) in N/mm², in rigid supports and locking devices is in compliance with the criteria defined in Ch 5, Sec 1, [5.4.4], item c).

1.7 Tests and trials

1.7.1 Tests and trials defined in [1.7.2] to [1.7.4] are to be carried out in the presence of the Surveyor. Upon special request, these conditions of tests and trials may be modified to comply with any relevant national regulations in use.

1.7.2 The wire ropes are to be submitted to a tensile test on test-piece.

1.7.3 The loose gears used for the platform and ramp handling (chain, shackles, removable blocks, etc.) are to have a maximum safe working load (SWL) and are to be submitted to an individual test before fitting on board.

The test of these loose gears are to be in accordance with the applicable requirements of Rule Note NR526, Rules for the Certification of Lifting Appliances on board Ships and Offshore Units.

1.7.4 A trial to verify the correct operation of lowering and lifting devices of the platform is to be carried out before going into service.

This trial is made without overload unless special requirement of National Authorities.

2 External ramps

2.1 General

2.1.1 The external ramps are to be able to operate with a heel angle of 5° and a trim angle of 2°.

2.1.2 The net thicknesses of plating and the net scantlings of ordinary stiffeners and primary supporting members are to be determined under vehicle loads in harbour condition, at rest, as defined in Tab 1.

2.1.3 The external ramps are to be examined for their watertightness, if applicable.

2.1.4 The locking of external ramps in stowage position in navigation conditions is examined by the Society on a case by case basis.

2.1.5 The vessel’s structure under the reactions due to the ramp is examined by the Society on a case by case basis.

Table 1: Movable decks and inner ramps

<table>
<thead>
<tr>
<th>Ship condition</th>
<th>Load case</th>
<th>Still water pressure (p_s) and inertial pressure (p_{in}) in kN/m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upright navigation condition</td>
<td>“a”</td>
<td>No inertial pressure</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(p_{wx} = \frac{a_{x1}}{g} (p_0 + p_1)) in x direction</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(p_{wz} = \frac{a_{z1}}{g} (p_0 + \alpha p_1)) in z direction</td>
</tr>
<tr>
<td>Inclined navigation condition (negative roll angle)</td>
<td>“c”</td>
<td>(p_{wy} = C_{FA} a_{y2} g (p_0 + \alpha p_1)) in y direction</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(p_{wz} = C_{FA} a_{z2} g (p_0 + \alpha p_1)) in z direction</td>
</tr>
<tr>
<td>Harbour condition (1)</td>
<td>during lifting</td>
<td>(p_{wx} = 0,035 p_0) in x direction</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(p_{wy} = 0,087 p_0) in y direction</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(p_{wz} = 0,200 p_0) in z direction</td>
</tr>
<tr>
<td></td>
<td>at rest</td>
<td>(p_{wx} = 0,035 (p_0 + p_1)) in x direction</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(p_{wy} = 0,087 (p_0 + p_1)) in y direction</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(p_{wz} = 0,100 (p_0 + p_1)) in z direction</td>
</tr>
</tbody>
</table>

(1) For harbour conditions, a heel angle of 5° and a trim angle of 2° are taken into account. In case the designer is proposing a heel angle of less than 5° based on specific operational conditions, the used angle is to be clearly specified.

Note 1:
- \(p_0, p_1 \): Pressures, in kN/m², to be calculated according to [1.5.2] for the condition considered
- \(\alpha \): Coefficient taken equal to 0,5
- \(a_{x1}, a_{z1}, a_{y2}, a_{z2} \): Reference values of the accelerations defined in Ch 3, Sec 3, Tab 5
- \(C_{FA} \): Combination factor, to be taken equal to:
 - \(C_{FA} = 0,7 \) for load case “c”
 - \(C_{FA} = 1,0 \) for load case “d”
SECTION 7 ARRANGEMENTS FOR HULL AND SUPERSTRUCTURE OPENINGS

Symbols

\[n \] : Navigation coefficient defined in Ch 3, Sec 1, [5.2]

\[z_{hc} \] : Z co-ordinate, in m, of the top of hatch coaming

\[z_{LE} \] : Z co-ordinate, in m, of the lower edge of opening.

\[h_2 \] : Reference value, in m, of the relative motion in the inclined vessel condition in Ch 3, Sec 3, [2.2.1]

1 Side shell openings

1.1 General

1.1.1 Openings in the vessel’s sides, e.g. for cargo ports, are to be well rounded at the corners and located well clear of superstructure ends or any openings in the deck areas at sides of hatchways.

1.2 Local strengthening

1.2.1 Openings are to be compensated if their edge is less than 0.25 D from the bottom or from the deck and if all these openings are located over 0.25L from either end perpendicular.

Compensation is not required for circular openings having a diameter at most equal to 300 mm.

1.2.2 Openings for water intakes are to be well rounded at the corners and, within 0.6L amidships, located outside the bilge strakes. Where arrangements are such that water intakes are unavoidably located in the curved zone of the bilge strakes, such openings are to be elliptical with the major axis in the longitudinal direction.

1.2.3 Openings in [1.2.1] and [1.2.2] and, when deemed necessary by the Society, other openings of considerable size, are to be compensated by means of insert plates or doublers sufficiently extended in length. Such compensation is to be partial or total depending on the stresses occurring in the area of the openings.

1.2.4 Circular openings on the sheerstrake need not be compensated where their diameter does not exceed 20% of the sheerstrake minimum width, and where they are located away from openings on deck at the side of hatchways or superstructure ends.

2 Cargo hatchways on open deck vessels

2.1 Position of openings and local strengthening

2.1.1 Openings in the strength deck are to be kept to a minimum and spaced as far apart from one another and from breaks of effective superstructures as practicable. Openings are to be cut as far as practicable from hatchway corners.

Stringer plate cut-outs situated in the cargo hold space of open deck vessels are to be strengthened by means of plates having an increased thickness or by means of doubling plates. This is not applicable to scupper openings.

2.2 Corners of hatchways

2.2.1 The corners of hatchways are recommended to be rounded.

In any case, continuity is to be ensured by means of brackets and extended girders.

2.3 Deck strengthening

2.3.1 Plating thickness in way of the corners

The deck plating where the hatchways form corners is to have:

- twice the thickness of the stringer plate over 0.5 L amidships
- the same thickness as the stringer plate over 0.15 L at the ends of the vessel.

As an alternative for small hatch openings, the deck plating may be strengthened by a doubling plate having the same thickness as the stringer plate.

2.3.2 The area of strengthened plating is to extend over twice the actual stringer plate width on either side of the hatch end and, if necessary, beyond the transverse bulkheads of passenger and crew accommodation if the floor of these cabins is not level with the upper deck.

2.3.3 The strengthenings referred to herebefore may be partly or wholly dispensed with if the hatch coamings blend with the longitudinal bulkheads of the accommodation located beyond the hatchway, thus ensuring longitudinal strength continuity in that region.
2.4 Hatch coamings

2.4.1 Scantling and stiffening
See Ch 5, Sec 4, Deck Scantlings.

2.4.2 Cut-outs
Where there are cut-outs in the coaming upper part to make way for the hatchway beams, the edges of the cut-outs are to be carefully rounded and a doubbling plate or a plate with an increased thickness is to be provided to ensure adequate bearing capability of the hatchway beams.

2.4.3 Extension and strength continuity
Longitudinal coamings are to be extended under the deck. In the case of single hull vessels, the longitudinal coaming extension is to be bent under the brackets to which it is connected.

As far as practicable, it is recommended to extend the part of the hatch coaming which is located above the deck and to connect it to the side bulkheads of the accommodation spaces.

At the end of large-size hatchways, strength continuity of the top structure is to be ensured. This is to be arranged by extending the deck girders beyond the hatchways over two frame spacings or over a distance equal to the height of the hatch coaming.

Transverse coamings are to extend below the deck at least to the lower edge of the longitudinal coaming. Transverse coamings not in line with ordinary deck beams below are to extend below the deck up to the next deck girder.

3 Cargo hatchways on flush deck vessels

3.1 Position of openings local strengthening

3.1.1 Openings in the strength deck are to be kept to a minimum and spaced as far apart from one another and from breaks of effective superstructures as practicable.

Openings are to be cut as far as practicable from hatchway corners.

3.1.2 No compensation is required where the openings are:
- circular of less than 350 mm in diameter and at a distance, sufficiently far, from any other opening
- elliptical with the major axis in the longitudinal direction and the ratio of the major to minor axis not less than 2.

3.2 Corners of hatchways

3.2.1 Hatchways are to be rounded at their corners. The radius of circular corners is to be not less than:
- 5% of the hatch width, where a continuous longitudinal deck girder is fitted below the hatch coaming
- 8% of the hatch width, where no continuous longitudinal deck girder is fitted below the hatch coaming.

Corner radiusing, in the case of the arrangement of two or more hatchways athwartship, is considered by the Society on a case by case basis.

3.2.2 Strengthening by insert plates in the cargo area are, in general, not required in way of corners where the plating cut-out has an elliptical or parabolic profile and the half axis of elliptical openings, or the half lengths of the parabolic arch, are not less than:
- 1/20 of the hatchway width or 600 mm, whichever is the lesser, in the transverse direction
- twice the transverse dimension, in the fore and aft direction.

3.3 Deck strengthening

3.3.1 The deck plating where the hatchways form corners, is to be increased by 60% with respect to the adjacent plates. As an alternative, the deck plating may be strengthened by a doubling plate having the same thickness.

A lower thickness may be accepted by the Society on the basis of calculations showing that stresses at hatch corners are lower than permissible values.

3.4 Hatch coamings

3.4.1 Scantling and stiffening
See Ch 5, Sec 4, Deck Scantlings.

The edges of cut-outs are to be carefully rounded.

3.4.2 Extension and strength continuity
The lower part of longitudinal coamings are to extend to the lower edge of the nearest beams to which they are to be efficiently secured.

In case of girders fitted under deck or under beams in the plane of the coaming longitudinal sides, strength continuity is to be ensured by means of suitable shifting. The same applies in case of strengthened beams in the plane of the coaming transverse boundaries.

3.4.3 Vertical brackets or stays
Where necessary, the coaming boundaries are to be stiffened with stays, as mentioned in Ch 5, Sec 4, [8.3.3].

3.5 Very small hatches

3.5.1 The following requirements apply to very small hatchways with a length and width of not more than 1.2 m.

3.5.2 In case of very small hatches, no brackets are required.

Small hatch covers are to have strength equivalent to that required for main hatchways. In any case, weathertightness is to be maintained.

3.5.3 Accesses to cofferdams and ballast tanks are to have manholes fitted with weathertight covers fixed with bolts which are sufficiently closely spaced. Other design configurations may be agreed by the Society case by case basis.

3.5.4 Hatchways of special design are considered by the Society on a case by case basis.
4 Sidescuttles, windows and skylights

4.1 General

4.1.1 Application
The requirements in [4.1] and [4.3] apply to sidescuttles and rectangular windows providing light and air, located on exposed hull structures.

4.1.2 Sidescuttle definition
Sidescuttles are round or oval openings with an area not exceeding 0.16 m². Round or oval openings having areas exceeding 0.16 m² are to be treated as windows.

4.1.3 Window definition
Windows are rectangular openings generally, having a radius at each corner relative to the window size in accordance with recognised national or international standards, and round or oval openings with an area exceeding 0.16 m².

4.1.4 Number of openings in the shell plating
The number of openings in the shell plating are to be reduced to the minimum compatible with the design and proper working of the vessel.

4.2 Watertight sidescuttles and windows

4.2.1 General
Windows and sidescuttles may be situated below the bulkhead deck if they are watertight, cannot be opened and comply with [4.2.2] and [4.2.3].

4.2.2 Sidescuttles
The construction and strength of sidescuttles fitted below the bulkhead deck are to be in compliance with ISO 1751:04/94, or equivalent standards.

4.2.3 Windows
The construction and strength of windows fitted below the bulkhead deck are to be in compliance with ISO 3903:04/94, or equivalent standards.

4.2.4 Manholes and flush scuttles
Manholes and flush scuttles exposed to the weather are to be closed by substantial covers capable of being made watertight. Unless secured by closely spaced bolts, the covers are to be permanently attached.

4.3 Glasses

4.3.1 General
In general, toughened glasses or laminated glasses with frames of special type are to be used in compliance with, or equivalent to, recognised national or international standards.

The use of clear plate glasses is considered by the Society on a case by case basis.

4.3.2 Design loads
The design load, \(p \), is to be determined in accordance with the applicable requirements of Ch 3, Sec 4, [2] or Ch 6, Sec 4, [3].

4.3.3 Scantling
The windows and sidescuttles scantling defined in this sub-article are equivalent to Standard ISO 21005/2004.

Window scantling defined in this Sub-article are provided for the following types of window:

- monolithic window (see [4.3.4])
- laminated window (see [4.3.5])
- double windows unit with gap (see [4.3.6]).

The edge condition of window and sidescuttle are considered as supported.

4.3.4 Thickness of monolithic windows
The thicknesses, in mm, of monolithic windows and sidescuttles are not to be less than 6 mm nor than the values obtained from the following formulae:

- rectangular window or sidescuttle:
 \[
 t = 27.4 s \frac{p S_f}{R_m}
 \]

- circular window or sidescuttle:
 \[
 t = 17.4 d \frac{p S_f}{R_m}
 \]

where:

- \(s \): Shorter side, in m, of rectangular window or sidescuttle
- \(d \): Diameter, in m, of circular window or sidescuttle
- \(\beta \): Aspect ratio coefficient of the rectangular window or sidescuttle, defined in Tab 1, where:
 \(\ell \): Longer side, in m, of rectangular window or sidescuttle
- \(p \): Design load, in kN/m² (see [4.3.2])
- \(S_f \): Safety factor equal to 5.0
- \(R_m \): Guaranteed minimum flexural strength, in N/mm², of material used.

For guidance only, the guaranteed minimum flexural strength \(R_m \) for glass window is:

- for glass thermally tempering (toughened):
 \[
 R_m = 180 \text{ N/mm}^2
 \]
- for glass chemically toughened:
 \[
 R_m = 250 \text{ N/mm}^2
 \]
4.3.5 Thickness of laminated windows

Laminated windows are glass windows realized by placing a layer of resin (polyvinyl butyral as a general rule) between two sheets of glass.

The thickness of laminated window is to be calculated as defined in [4.3.4], considering the total thickness of the laminated window as a monolithic window.

<table>
<thead>
<tr>
<th>ℓ/s</th>
<th>β</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,0</td>
<td>0,284</td>
</tr>
<tr>
<td>1,5</td>
<td>0,475</td>
</tr>
<tr>
<td>2,0</td>
<td>0,608</td>
</tr>
<tr>
<td>2,5</td>
<td>0,684</td>
</tr>
<tr>
<td>3,0</td>
<td>0,716</td>
</tr>
<tr>
<td>3,5</td>
<td>0,734</td>
</tr>
<tr>
<td>≥4,0</td>
<td>0,750</td>
</tr>
</tbody>
</table>

4.3.6 Thickness of double windows

Double windows are glass windows realized by two sheets of glass, separated by a spacebar hermetically sealed.

The thickness of the outside glass exposed to loads is to be calculated as defined in [4.3.4].

4.3.7 Thickness of glasses forming screen bulkheads or internal boundaries of deckhouses

The thickness of glasses forming screen bulkheads on the side of enclosed promenade spaces and that for rectangular windows in the internal boundaries of deckhouses which are protected by such screen bulkheads are considered by the Society on a case by case basis.

The Society may require both limitations on the size of rectangular windows and the use of glasses of increased thickness in way of front bulkheads which are particularly exposed.

4.4 Skylights

4.4.1 Fixed or opening skylights are to have glass thickness appropriate to their size and position as required for windows and sidescuttles. Skylight glasses in any position are to be protected from mechanical damage. They are to be provided with permanently attached robust deadlights.

5 Scuppers and discharges

5.1 Material

5.1.1 The scuppers and discharge pipes are to be constructed of steel. Other equivalent materials are considered by the Society on a case by case basis.

5.2 Wall thickness

5.2.1 The wall gross thickness of scuppers and discharge pipes is to be not less than the shell plating thickness in way of the scuppers, respectively discharge pipes, but need not exceed 8 mm.

6 Freeing ports

6.1 General provisions

6.1.1 Where bulwarks on weather decks form wells, provisions are to be made for rapidly freeing the decks from water and draining them.

A well is any area on the deck exposed to the weather, where water may be entrapped.

7 Machinery space openings

7.1 Skylight hatches

7.1.1 Engine room skylights are to be fitted with weather-tight hatches made of steel or any other equivalent material. The hatches are to be permanently secured to the sides where the lower edge of the opening is at a height above the load waterline of less than 1 m for ranges of navigation $IN(0,6 < x \leq 2)$, or 0,5 m for the range of navigation $IN(0,6)$.

7.2 Closing devices

7.2.1 Openings in machinery space casings are to be surrounded by a steel casing of efficient construction. The openings of the casings exposed to the weather are to be fitted with strong and weathertight doors.

7.3 Position of non-weathertight openings

7.3.1 In any case, the distance, in m, of the lower edge of a non-weathertight opening to the load waterline is to be such that:

$$z_{LE} \geq T + h_2$$

7.4 Entrances

7.4.1 The height, in m, of entrances to machinery space, h_C, above the deck is not to be less than the values given in Tab 2. Furthermore, this height h_C, above the deck, is to be such that:

$$z_C \geq T + h_2 + 0,15$$

<table>
<thead>
<tr>
<th>Vessel type</th>
<th>Range of navigation</th>
<th>h_C, in m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carriage of dangerous goods</td>
<td>All</td>
<td>0,5</td>
</tr>
<tr>
<td>Other vessels</td>
<td>$IN(0)$ and $IN(0,6)$</td>
<td>0,3</td>
</tr>
<tr>
<td></td>
<td>$IN(0,6 < x \leq 2)$</td>
<td>0,5</td>
</tr>
</tbody>
</table>
8 Companionway

8.1 General

8.1.1 Companions leading under the bulkhead deck are to be protected by a superstructure or closed deckhouse, or by a companionway having equivalent strength and tightness.

8.1.2 Companion sill height

For vessels assigned the range of navigation IN(0), the companion sill height, above the deck, h_C, is not to be less than 0,05 m.

For vessels assigned other range of navigation, the sill height above the deck is not to be less than 0,15 m.

Furthermore, this height h_C, above the deck, is to be such that:

$z_{nc} \geq T + h_2 + 0,15$

9 Ventilators

9.1 General

9.1.1 Ventilator openings below main deck are to have coamings of steel or other equivalent material, substantially constructed and efficiently connected to the deck.

9.1.2 Coamings

In vessels assigned the range of navigation IN(0), the coaming height, above the deck, h_C, is not to be less than 0,15 m.

In vessels assigned other range of navigation, the coaming height above the deck is not to be less than 0,30 m and this height is to be such that:

$z_{nc} \geq T + h_2 + 0,15$
SECTION 8 HELICOPTER DECKS AND PLATFORMS

Symbols

WH : Maximum weight of the helicopter, in t
AT : Tyre or skid print area, in m². Where the print area AT is not specified by the Designer, the following values are to be taken into account:
- for one tyre: 0,3 m x 0,3 m
- for one skid: 1,0 m x 0,01 m.

1 Application

1.1 General

1.1.1 The requirements of this Section apply to areas equipped for the landing and take-off of helicopters with wheels or helicopters with landing skids, and located on a deck or on a platform permanently connected to the hull structure.

1.1.2 Helicopter deck or platform intended for the landing of helicopters having landing devices other than wheels or skids are to be examined by the Society on a case by case basis.

2 General arrangement

2.1 Landing area and approach sector

2.1.1 The main dimensions of the landing area, its location on board, the approach sector for landing and take-off are to comply with the applicable requirements from National or other Authorities.

2.1.2 The landing area and the approach sector are to be free of obstructions above the level of the helicopter deck or platform.

Note 1: The following items may exceed the height of the landing area, but not more than 100 mm:
- guttering or slightly raised kerb
- lightning equipment
- outboard edge of the safety net
- foam monitors
- those handrails and other items associated with the landing area which are incapable of complete retraction or lowering for helicopter operations.

2.2 Sheathing of the landing area

2.2.1 Within the landing area, a non-skid deck covering is recommended. Where the helicopter deck or platform is wood sheathed, special attention is to be paid to the fire protection.

2.3 Safety net

2.3.1 It is recommended to provide a safety net at the sides of the helicopter deck or platform.

2.4 Drainage system

2.4.1 Gutterways of adequate height and a drainage system are recommended on the periphery of the helicopter deck or platform.

3 Design principle

3.1 General

3.1.1 Local deck strengthening is to be fitted at the connection of diagonals and pillars supporting platform.

3.2 Partial safety factors

3.2.1 The partial safety factors to be considered for the checking of helicopter decks and platforms structures are specified in Tab 1.

Table 1 : Helicopter decks and platforms
Partial safety factors γS2 and γW2

<table>
<thead>
<tr>
<th>Uncertainties regarding:</th>
<th>Symbol</th>
<th>Plating</th>
<th>Ordinary stiffeners</th>
<th>Primary supporting members</th>
</tr>
</thead>
<tbody>
<tr>
<td>Still water pressure</td>
<td>γS2</td>
<td>1,00</td>
<td>1,00</td>
<td>1,00</td>
</tr>
<tr>
<td>Wave pressure</td>
<td>γW2</td>
<td>1,20</td>
<td>1,20</td>
<td>1,10</td>
</tr>
</tbody>
</table>

4 Design loads

4.1 Landing load

4.1.1 The landing force F1 transmitted trough one wheel or a group of wheels or one skid to the helicopter deck or platform is to be obtained, in kN, from the following formula:

\[F_1 = 7,36 \ W_{ht} \]

4.2 Emergency landing load

4.2.1 The emergency landing force FEL resulting from the crash of the helicopter, and transmitted trough one wheel or a group of wheels or one skid to the helicopter deck or platform, is to be obtained, in kN, from the following formula:

\[F_{EL} = 12,3 \ W_{ht} \]
4.3 Garage load

4.3.1 Where a garage zone is fitted in addition to the landing area, the still water and inertial forces transmitted through one wheel or a group of wheels or one skid to the helicopter deck or platform are to be obtained, in kN, as specified in Ch 3, Sec 4, [3.5], where \(M \) is to be taken equal to 0.5 WH.

4.4 Specific loads for helicopter platforms

4.4.1 The still water and inertial forces applied to an helicopter platform are to be determined, in kN, as specified in Tab 2.

5 Scantlings

5.1 General

5.1.1 The scantlings of the structure of an helicopter deck or platform are to be obtained according to [5.2], [5.3] and [5.4]. They are to be considered in addition to scantlings obtained from other applicable loads, in particular from river pressures.

5.1.2 As specified in Ch 2, Sec 5, [1], all scantlings referred to in this section are net, i.e. they do not include any margin for corrosion.

The gross scantlings are obtained as specified in Ch 2, Sec 5, [1].

5.2 Plating

5.2.1 Load model

The following forces \(P_0 \) are to be considered independently:

- \(P_0 = F_l \)
 where \(F_l \) is the force corresponding to the landing load, as defined in [4.1]
- \(P_0 = \gamma_s F_s + \gamma_w F_{w,z} \)
 where \(F_s \) and \(F_{w,z} \) are the forces corresponding to the garage load, as defined in [4.3], if applicable.

5.2.2 Net thickness of plating

The net thickness of an helicopter deck or platform subjected to forces defined in [5.2.1] is not to be less than the value obtained according to Pt D, Ch 1, Sec 5, [4.3.1], considering \(\lambda \) equal to 1 in the particular case of a platform.

5.2.3 Helicopter with wheels

For helicopters with wheels, in the particular case where \(u > s \), the tyre print outside of the plate panel is to be disregarded. In such a case, the load is to be considered as being fully distributed on the spacing \(s \) only (see Fig 1).

Table 2 : Helicopter platforms - Still water and inertial forces

<table>
<thead>
<tr>
<th>Vessel condition</th>
<th>Still water force (F_s) and inertial force (F_{w,z}), in kN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Still water condition</td>
<td>(F_s = (W_h + W_p) g)</td>
</tr>
<tr>
<td>Upright condition</td>
<td>(F_{w,x} = (W_h + W_p) a_{x1} + 1.2 A_{ox}) in x direction</td>
</tr>
<tr>
<td></td>
<td>(F_{w,z} = (W_h + W_p) a_{z1}) in z direction</td>
</tr>
<tr>
<td>Inclined condition</td>
<td>(F_{w,y} = 0.7 (W_h + W_p) a_{y2} + 1.2 A_{oy}) in y direction</td>
</tr>
<tr>
<td></td>
<td>(F_{w,z} = 0.7 (W_h + W_p) a_{z2}) in z direction</td>
</tr>
</tbody>
</table>

(1) Inclined condition is not applicable for vessels less than 40 m in length.

Note 1:

\(W_p \quad \) Structural weight of the helicopter platform, in t, to be evenly distributed, and to be taken not less than the value obtained from the following formula:

\[W_p = 0.2 A_{n} \]

\(A_{n} \quad \) Area, in \(m^2 \), of the entire landing area

\(a_{x1}, a_{z1} \quad \) Accelerations, in \(m/s^2 \), determined at the helicopter centre of gravity for the upright vessel condition, and defined in Ch 3, Sec 3, [2.3]

\(a_{y2}, a_{z2} \quad \) Accelerations, in \(m/s^2 \), determined at the helicopter centre of gravity for the inclined vessel condition, and defined in Ch 3, Sec 3, [2.3]

\(A_{ox}, A_{oy} \quad \) Vertical areas, in \(m^2 \), of the helicopter platform in x and y directions respectively. Unless otherwise specified, \(A_{ox} \) and \(A_{oy} \) may be taken equal to \(A_n / 3 \).

Figure 1 : Tyre print with \(u > s \)
5.2.4 Helicopter with skids

For helicopters with skids, in the particular case where \(v > \ell \), the skid print outside of the plate panel is to be disregarded. In such a case, the load is to be considered as being fully distributed on the span \(\ell \) only (see Fig 2).

Figure 2 : Skid print with \(v > \ell \)

5.3 Ordinary stiffeners

5.3.1 Load model

The following forces \(P_0 \) are to be considered independently:

- \(P_0 = F_L \)
 - where \(F_L \) is the force corresponding to the landing load, as defined in [4.1]

- \(P_0 = F_{EL} \)
 - where \(F_{EL} \) is the force corresponding to the emergency landing load, as defined in [4.2]

- \(P_0 = \gamma_{S2} F_S + \gamma_{W2} F_{W, z} \)
 - where \(F_S \) and \(F_{W, z} \) are the forces corresponding to the garage load, as defined in [4.3], if applicable

- \(P_0 = \gamma_{S2} F_S + \gamma_{W2} F_{W, z} \)
 - for an helicopter platform, where \(F_S \) and \(F_{W, z} \) are the forces defined in [4.4].

5.3.2 Normal and shear stresses

The normal stress \(\sigma \) and the shear stress \(\tau \) induced by forces defined in [5.3.1] in an ordinary stiffener of an helicopter deck or platform are to be obtained, in N/mm², according to:

\[
\sigma = \frac{P_0 c}{mW} 10^3 + \sigma_{S1,\text{Wh}}
\]

\[
\tau = \frac{10 P_0}{A_{\text{Wh}}}
\]

where:

- \(m \): Coefficient to be taken equal to:
 - \(m = 6 \) in the case of an helicopter with wheels
 - \(m = 10 \) in the case of an helicopter with landing skids.

In addition, in both cases of helicopter with wheels and helicopter with landing skids, the hull girder stresses \(\sigma_{S1,\text{Wh}} \) are to be taken equal to 0 in the particular case of an helicopter platform.

5.3.3 Checking criteria

It is to be checked that the normal stress \(\sigma \) and the shear stress \(\tau \) calculated according to [5.3.2], are in compliance with the following formulae:

\[
\frac{R}{\gamma_m \gamma_R} \geq \frac{\sigma}{\gamma_m \gamma_R}
\]

\[
0.5 \frac{R}{\gamma_m \gamma_R} \geq \tau
\]

where:

- \(\gamma_m \): Partial safety factor covering uncertainties on the material, to be taken equal to 1,02

- \(\gamma_R \): Partial safety factor covering uncertainties on the resistance:
 - \(\gamma_R = 1,30 \) for landing area located above accommodation spaces
 - \(\gamma_R = 1,05 \) for landing area located outside a zone covering accommodation spaces
 - \(\gamma_R = 1,00 \) for emergency condition.

5.4 Primary supporting members

5.4.1 Load model

The following loads are to be considered independently:

- landing load, as defined in [4.1]
- emergency landing load, as defined in [4.2]
- garage load, as defined in [4.3], if applicable
- specific loads as defined in [4.4], for an helicopter platform.

5.4.2 Normal and shear stresses

In both cases of helicopter with wheels and helicopter with landing skids, the normal stress \(\sigma \) and the shear stress \(\tau \) induced by loads defined in [5.4.1] in a primary supporting member of an helicopter deck or platform are to be obtained as follows:

- for analyses based on finite element models:
 \[
 \sigma = \max (\sigma_1, \sigma_2) \quad \text{and} \quad \tau = \tau_{12}
 \]
 - where \(\sigma_1, \sigma_2 \) and \(\tau_{12} \) are to be obtained according to Ch 5, App 2, [5.2]

- for analyses based on beam models:
 \[
 \sigma = \sigma_1 \quad \text{and} \quad \tau = \tau_{12}
 \]
 - where \(\sigma_1 \) and \(\tau_{12} \) are to be obtained according to Ch 5, App 2, [5.3].

In addition, the hull girder stresses are to be taken equal to 0 in the particular case of an helicopter platform.
5.4.3 Checking criteria

It is to be checked that the normal stress σ and the shear stress τ calculated according to [5.4.2] are in compliance with the following formulae:

\[
\frac{R_y}{\gamma_R \gamma_m} \geq \sigma \\
0.5 \frac{R_y}{\gamma_R \gamma_m} \geq \tau
\]

where:

γ_m : Partial safety factor covering uncertainties on the material to be taken equal to 1.02

γ_R : Partial safety factor covering uncertainties on the resistance:

- $\gamma_R = 1.40$ for landing area located above accommodation spaces
- $\gamma_R = 1.15$ for landing area located outside a zone covering accommodation spaces
- $\gamma_R = 1.00$ for emergency condition.
Part B

Hull Design and Construction

Chapter 7

HULL OUTFITTING

SECTION 1 RUDDERS
SECTION 2 BULWARKS AND GUARD RAILS
SECTION 3 PROPELLER SHAFT BRACKETS
SECTION 4 EQUIPMENT
SECTION 5 CRANES AND BUNKER MASTS
SECTION 6 VESSEL COUPLING
SECTION 1 RUDDERS

Symbols

n : Navigation coefficient defined in Ch 3, Sec 1, [5.2]
V_{AV} : Maximum ahead service speed, in km/h, at maximum draught, T; this value is not to be taken less than \(8 \)
V_{AD} : Maximum astern speed, in km/h, to be taken not less than 0.5 \(V_{AV} \)
A : Total area of the rudder blade, in m\(^2\), bounded by the blade external contour, including the mainpiece and the part forward of the centre-line of the rudder pintles, if any
\(k_1 \) : Material factor, defined in [1.4.3]
\(k \) : Material factor, defined in Ch 2, Sec 3, [2.4] (see also [1.4.5])
\(C_R \) : Rudder force, in N, acting on the rudder blade, defined in [2.1.2]
\(M_{TR} \) : Rudder torque, in N.m, acting on the rudder blade, defined in [2.1.3]
\(M_b \) : Bending moment, in N.m, in the rudder stock, defined in [5.1].

1 General

1.1 Application

1.1.1 Ordinary profile rudders
The requirements of this Section apply to ordinary profile rudders, without any special arrangement for increasing the rudder force, whose maximum orientation at maximum vessel speed is limited to 35\(^\circ\) on each side.

In general, an orientation greater than 35\(^\circ\) is accepted for manoeuvres or navigation at very low speed.

1.1.2 High efficiency rudders
The requirements of this Section also apply to rudders fitted with flaps to increase rudder efficiency. For these rudder types, an orientation at maximum speed greater than 35\(^\circ\) may be accepted. In these cases, the rudder forces are to be calculated by the Designer for the most severe combinations between orientation angle and vessel speed. These calculations are to be considered by the Society on a case-by-case basis.

The rudder scantlings are to be designed so as to be able to sustain possible failures of the orientation control system, or, alternatively, redundancy of the system itself may be required.

1.1.3 Steering nozzles
The requirements for steering nozzles are given in [8].

1.1.4 Special rudder types
Rudders others than those in [1.1.1], [1.1.2] and [1.1.3] will be considered by the Society on a case-by-case basis.

1.2 Gross scantlings

1.2.1 With reference to Ch 2, Sec 5, [2], all scantlings and dimensions referred to in this section are gross, i.e. they include the margins for corrosion.

1.3 Arrangements

1.3.1 Effective means are to be provided for supporting the weight of the rudder without excessive bearing pressure, e.g. by means of a rudder carrier attached to the upper part of the rudder stock. The hull structure in way of the rudder carrier is to be suitably strengthened.

1.3.2 Suitable arrangements are to be provided to prevent the rudder from lifting.

In addition, structural rudder stops of suitable strength are to be provided, except where the steering gear is provided with its own rudder stopping devices, as detailed in Pt C, Ch 1, Sec 11, [6.6.1].

1.3.3 In rudder trunks which are open to the river/sea, a seal or stuffing box is to be fitted above the deepest load waterline, to prevent water from entering the steering gear compartment and the lubricant from being washed away from the rudder carrier. If the top of the rudder trunk is below the deepest waterline two separate stuffing boxes are to be provided.

1.4 Materials

1.4.1 Rudder stocks, pintles, coupling bolts, keys and cast parts of rudders are to be made of rolled steel, steel forgings or steel castings according to the applicable requirements of NR 216 Materials and Welding, Chapter 2.

1.4.2 The material used for rudder stocks, pintles, keys and bolts is to have a minimum yield stress not less than 200 N/mm\(^2\).

1.4.3 The requirements relevant to the determination of scantlings contained in this Section apply to steels having a minimum yield stress equal to 235 N/mm\(^2\).
Where the material used for rudder stocks, pintles, coupling bolts, keys and cast parts of rudders has a yield stress different from 235 N/mm², the scantlings calculated with the formulae contained in the requirements of this Section are to be modified, as indicated, depending on the material factor k_1, to be obtained from the following formula:

$$k_1 = \left(\frac{235}{R_m} \right)^{n_1}$$

where:

R_{yt}: Yield stress, in N/mm², of the steel used, and not exceeding the lower of 0.7 R_m and 450 N/mm²

R_m: Minimum ultimate tensile strength, in N/mm², of the steel used

n_1: Coefficient to be taken equal to:
- $n_1 = 0.75$ for $R_{yt} > 235$ N/mm²
- $n_1 = 1.00$ for $R_{yt} \leq 235$ N/mm².

1.4.4 Significant reductions in rudder stock diameter due to the application of steels with yield stresses greater than 235 N/mm² may be accepted by the Society subject to the results of a check calculation of the rudder stock deformations.

1.4.5 Welded parts of rudders are to be made of approved rolled hull materials. For these members, the material factor k defined in Ch 2, Sec 3, \[2.4\] is to be used.

2 Force and torque acting on the rudder

2.1 Rudder blade

2.1.1 Rudder blade description

A rudder blade may have trapezoidal or rectangular contour.

2.1.2 Rudder force

The rudder force C_R is to be obtained, in N, from the following formula:

$$C_R = 28.86 \left(1 + n^{0.15}\right) V^2 r_1 r_2 r_3$$

where:

V: V_{AV} or V_{AD}, depending on the condition under consideration (for high lift profiles see \[1.1.2\])

r_1: Shape factor, to be taken equal to:

$$r_1 = \frac{\lambda + 2}{3}$$

λ: Coefficient, to be taken equal to:

$$\lambda = \frac{h^2}{A_T}$$

and not greater than 2

h: Mean height, in m, of the rudder area to be taken equal to (see Fig 1):

$$h = \frac{z_1 + z_2 - z_3}{2}$$

A_T: Area, in m², to be calculated by adding the rudder blade area A to the area of the rudder post or rudder horn, if any, up to the height h

2.1.3 Rudder torque

The rudder torque M_{TR}, for both ahead and astern conditions, is to be obtained, in N.m, from the following formula:

$$M_{TR} = C_R r$$

where:

r: Lever of the force C_R, in m, equal to:

$$r = b \left(\frac{\alpha - A_T}{A} \right)$$

and to be taken not less than 0.1 b for the ahead condition

Table 1: Values of coefficient r_2

<table>
<thead>
<tr>
<th>Rudder profile type</th>
<th>r_2 for ahead condition</th>
<th>r_2 for astern condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>NACA 00 - Goettingen</td>
<td>1.10</td>
<td>0.80</td>
</tr>
<tr>
<td>Hollow</td>
<td>1.35</td>
<td>0.90</td>
</tr>
<tr>
<td>Flat side</td>
<td>1.10</td>
<td>0.90</td>
</tr>
<tr>
<td>High lift</td>
<td>1.70</td>
<td>1.30</td>
</tr>
<tr>
<td>Fish tail</td>
<td>1.40</td>
<td>0.80</td>
</tr>
<tr>
<td>Single plate</td>
<td>1.00</td>
<td>1.00</td>
</tr>
</tbody>
</table>
b : Mean breadth, in m, of rudder area to be taken equal to (see Fig 1):
\[b = \frac{x_2 + x_3 - x_1}{2} \]

\(\alpha \) : Coefficient to be taken equal to:
- \(\alpha = 0.33 \) for ahead condition
- \(\alpha = 0.66 \) for astern condition

\(A_F \) : Area, in m², of the rudder blade portion in front of the centreline of rudder stock (see Fig 1).

Figure 1 : Geometry of rudder blade without cut-outs

3 Rudder stock scantlings

3.1 Rudder stock diameter

3.1.1 Rudder stock subjected to torque only

For rudder stocks subjected to torque only, the diameter is to be not less than the value obtained, in mm, from the following formula:

\[d_T = 4.2 \left(M_{TR} k_1 \right)^{1/3} \]

3.1.2 Rule rudder stock diameter

The rudder stock diameter, at the lower part, is to be not less than the value obtained, in mm, from the following formula:

\[d_{TF} = 4.2 \left(M_{TF} k_1 \right)^{1/3} \left[1 + 4 \left(\frac{M_b}{M_{TR}} \right)^{3/8} \right] \]

where:
- \(M_b \) : Maximum absolute value of bending moment over the rudder stock length, to be obtained according to [5.1].

If not otherwise specified, the notation \(d_T \) used in this Section is equivalent to \(d_{TF} \).

3.1.3 Rule rudder stock diameter in way of the tiller

In general, the diameter of a rudder stock subjected to torque and bending may be gradually tapered above the lower stock bearing so as to reach, from \(d_T \), value, the value of \(d_{TF} \) in way of the quadrant or the tiller.

3.2 Deformation criterion

3.2.1 Rudder stock slope in way of the bearings

Large rudder stock deformations are to be avoided in order to avoid excessive edge pressures in way of bearings. The Society may require an additional check of the rudder stock diameter to make sure that the rudder stock slopes in way of bearings are acceptable, by relating them to bearing lengths (see [5.2.3]) and bearing clearances (see [5.2.4]).

4 Rudder stock couplings

4.1 Horizontal flange couplings

4.1.1 General

In general, the coupling flange and the rudder stock are to be forged from a solid piece. A shoulder radius as large as practicable is to be provided for between the rudder stock and the coupling flange. This radius is to be not less than 0,15 \(d_T \), where \(d_T \) is the rudder stock diameter defined in [3.1.2].

4.1.2 Welding

The coupling flange may be welded onto the stock provided that its thickness is increased by 10%, and that the weld extends through the full thickness of the coupling flange and that the assembly obtained is subjected to heat treatment. This heat treatment is not required if the diameter of the rudder stock is less than 75 mm.

Where the coupling flange is welded, the grade of the steel used is to be of weldable quality, particularly with a carbon content not greater than 0,23% and the welding conditions are to be defined to the satisfaction of the Society. The throat weld at the top of the flange is to be concave shaped to give a fillet shoulder radius as large as practicable.

4.1.3 Bolts

Horizontal flange couplings are to be connected by fitted bolts having a diameter not less than the value obtained, in mm, from the following formula:

\[d_b = 0.62 \frac{d_T k_{1B}}{n_b e_m k_{1S}} \]

where:
- \(d_T \) : Rudder stock diameter, in mm, defined in [3.1.2]
- \(k_{1S} \) : Material factor \(k_1 \) for the steel used for the rudder stock
- \(k_{1B} \) : Material factor \(k_1 \) for the steel used for the bolts
- \(e_m \) : Mean distance, in mm, of the bolt axes from the centre of the bolt system
- \(n_b \) : Total number of bolts, which is to be not less than 6.

Non-fitted bolts may be used provided that, in way of the mating plane of the coupling flanges, a key is fitted having a section of (0,25 \(d_T \) x 0,10 \(d_T \)) mm² and keyways in both the coupling flanges, and provided that at least two of the coupling bolts are fitted bolts.

The distance from the bolt axes to the external edge of the coupling flange is to be not less than 1,2 \(d_b \).
4.1.4 Coupling flange
The thickness of the coupling flange is to be not less than the value obtained, in mm, from the following formulae, whichever is the greater:

\[\tau_p = 0.9 \, dB \]

\[\tau_p = 0.25 \, d_1 \]

where:

- \(\tau_p \) : Bolt diameter, in mm, calculated in accordance with [4.1.3], where the number of bolts \(n_B \) is to be taken not greater than 8

- \(k_{1F} \) : Material factor \(k_1 \) for the steel used for the flange

- \(k_{1B} \) : Material factor \(k_1 \) for the steel used for the bolts.

- \(d_1 \) : Rudder stock diameter, in mm, defined in [3.1.2].

4.1.5 Locking device
A suitable locking device is to be provided to prevent the accidental loosening of nuts.

4.2 Couplings between rudder stocks and tillers

4.2.1 Application
The requirements of this sub-Article apply in addition to those specified in Pt C, Ch 1, Sec 11.

The requirements specified in [4.2.3] and [4.2.4] apply to solid rudder stocks in steel and to tiller bosses, either in steel or in SG iron, with constant external diameter. Solid rudder stocks others than those above will be considered by the Society on a case-by-case basis.

4.2.2 General
The entrance edge of the tiller bore and that of the rudder stock cone are to be rounded or bevelled.

The right fit of the tapered bearing is to be checked before final fit up, to ascertain that the actual bearing is evenly distributed and at least equal to 80% of the theoretical bearing area; push-up length is measured from the relative positioning of the two parts corresponding to this case.

The required push-up length is to be checked after releasing of hydraulic pressures applied in the hydraulic nut and in the assembly.

4.2.3 Push up length of cone couplings with hydraulic arrangements for assembling and disassembling the coupling
It is to be checked that the push up length \(\Delta_e \) of the rudder stock tapered part into the tiller boss is in compliance with the following formula:

\[\Delta_e \leq \Delta_0 \leq \Delta_1 \]

where:

\[\Delta_0 = 6,2 \times 10^3 \frac{M_{ns} \eta \gamma}{c d_{nt} \mu_0} \]

\[\Delta_1 = 2 \times 10^4 \frac{\gamma d_{nt} R_{sth}}{c} \]

- \(\eta \) : Coefficient to be taken equal to:
 - \(\eta = 2 \) for keyless connections
 - \(\eta = 1 \) for keyed connections

- \(c \) : Taper of conical coupling measured on diameter, to be obtained from the following formula:

\[c = (d_U - d_0) / t_s \]

\(t_s \), \(d_U \), \(d_0 \) : Geometrical parameters of the coupling, defined in Fig 2

\(\beta \) : Coefficient to be taken equal to:

\[\beta = 1 - \left(\frac{d_M}{d_U} \right)^2 \]

\(d_M \) : Mean diameter, in mm, of the conical bore, to be obtained from the following formula:

\[d_M = d_U - 0,5 \, c \, t_s \]

\(d_0 \) : Defined in Fig 2

\(R_{sth} \) : Defined in [1.4.3].

4.2.4 Boss of cone couplings with hydraulic arrangements for assembling and disassembling the coupling
The scantlings of the boss are to comply with the following formula:

\[\frac{1,8}{\eta \gamma} \frac{\Delta_e c}{d_0} \leq R_{sth} \leq \frac{1,8}{\eta \gamma} \frac{\Delta_1 c}{d_0} \]

where:

- \(\Delta_e \) : Push-up length adopted, in mm
- \(\eta \), \(\gamma \) : Defined in [4.2.3]
- \(d_0 \) : Defined in Fig 2
- \(R_{sth} \) : Defined in [1.4.3].

4.2.5 Cylindrical couplings by shrink fit
It is to be checked that the diametral shrinkage allowance \(\delta \) is in compliance with the following formula:

\[\delta_0 \leq \delta \leq \delta_1 \]

where:

\[\delta_0 = 6,2 \frac{M_{ns} \eta \gamma}{d_{nt} \mu_0 \beta_1} \]

\[\delta_1 = \frac{2 \eta + 5 \gamma d_{nt} R_{sth}}{1,8} \]

- \(\eta \), \(\mu \), \(\gamma \) : Defined in [4.2.3]
- \(d_{nt} \) : Defined in Fig 2
- \(R_{sth} \) : Defined in [1.4.3].
4.2.6 Keyless couplings through special devices
The use of special devices for frictional connections, such as expansible rings, may be accepted by the Society on a case-by-case basis provided that the following conditions are complied with:

- evidence that the device is efficient (theoretical calculations and results of experimental tests, references of behaviour during service, etc.) are to be submitted to the Society
- the torque transmissible by friction is to be not less than 2 MTR
- design conditions are to comply with [4.2.1]
- instructions provided by the manufacturer are to be complied with, notably concerning the pre-stressing of the tightening screws.

4.3 Cone couplings between rudder stocks and rudder blades

4.3.1 Taper on diameter
The taper on diameter of the cone couplings is to be in compliance with the following formulae:

- for cone couplings without hydraulic arrangements for assembling and disassembling the coupling:

\[
\frac{1}{12} \leq \frac{d_0 - d_U}{t_s} \leq \frac{1}{8}
\]

- for cone couplings with hydraulic arrangements for assembling and disassembling the coupling (assembling with oil injection and hydraulic nut):

\[
\frac{1}{20} \leq \frac{d_0 - d_U}{t_s} \leq \frac{1}{12}
\]

where:

- \(d_U, t_s, d_0, \): Geometrical parameters of the coupling, defined in Fig 2.

\[\text{Figure 2: Geometry of cone coupling}\]

4.3.2 Push-up pressure of cone coupling with hydraulic arrangements for assembling and disassembling the coupling
The push-up pressure, in N/mm², is not to be less than the greater of the two following values:

\[
p_{\text{req1}} = \frac{2Q_F}{d_M^2 \mu_0} \\
p_{\text{req2}} = \frac{6M_{bc}}{t^2 d_M} 10^3
\]

where:

- \(Q_F \): Design yield moment of rudder stock, in N.m, defined in [4.3.6]
- \(d_M \): Mean diameter, in mm, of the conical bore defined in [4.2.3]
- \(t \): Geometrical parameter of the coupling defined in Fig 2
- \(\mu_0 \): Frictional coefficient, taken equal to 0.15
- \(M_{bc} \): Bending moment at mid-height of the cone coupling, in N.m, to be deduced from the calculation of the bending moment in the rudder stock, \(M_{bc} \), as defined in [5.1].

It has to be demonstrated by the designer that the push-up pressure does not exceed the permissible surface pressure in the cone. The permissible surface pressure, in N/mm², is to be determined by the following formula:

\[
p_{\text{perm}} = \frac{0.8R_{yt}(1 - \alpha^2)}{\sqrt{3 + \alpha^2}}
\]

where:

- \(R_{yt} \): Minimum yield stress for the steel used for the gudgeon
- \(\alpha \): \(d_U/d_k \)
- \(d_k \): Outer diameter of the gudgeon, in mm, to be taken not less than 1.5 \(d_M \).

4.3.3 Push up length of cone coupling with hydraulic arrangements for assembling and disassembling the coupling
It is to be checked that the push-up length \(\Delta_k \), in mm, of the rudder stock tapered part into the boss is in compliance with the following formula:

\[
\Delta_k \leq \Delta_c \leq \Delta_t
\]

where:

\[
\Delta_c = \frac{p_{\text{req}} d_M}{E \left(1 - \frac{1}{2} \alpha^2 \right) c} + \frac{0.8R_{yt}}{c}
\]

\[
\Delta_t = \frac{1.6R_{yt} d_M}{Ec \sqrt{3 + \alpha^2}} + \frac{0.8R_{yt}}{c}
\]

- \(R_{yt} \): Mean roughness, in mm, taken equal to 0.01
- \(c \): Taper on conical coupling defined in [4.2.3].
Notwithstanding the above, the push-up length is not to be less than 2 mm.

Note 1: In case of hydraulic pressure connections, the required push-up force \(P_e \) in N, may be determined by the following formula:

\[
P_e = \frac{p_{rup} d_n t_c}{\pi \left(\frac{d_n}{2} + 0.02 \right)}
\]

4.3.4 Lower rudder stock end

The lower rudder stock end is to be fitted with a threaded part having a core diameter, \(d_G \), in mm, not less than (see Fig 2):

\[
d_G = 0.65 \ d_U
\]

where:

- \(d_U \): Rudder stock diameter, in mm, as defined in Fig 2.

This threaded part is to be fitted with an adequate slogging nut efficiently locked in rotation.

The contact length \(t_i \), in mm, of the rudder stock coupling cone inserted in the massive part (see Fig 2), deduction made of the chamfers and sealing ring grooves (oil grooves may be disregarded), is to be such that:

\[
t_i \geq 1.5 d_{U}/k_1
\]

where:

- \(k_1 \): Material factor of the massive part.

When the foreseen contact surface ratio between the rudder stock and the massive part is greater than 70%, a lower \(t_i/d_U \) ratio may be accepted, on a case-by-case basis, provided that the contact percentage is proportionally higher, without however being taken less than 1,2.

The dimensions of the slogging nut are recommended to be as follows (see Fig 2):

- outer diameter: \(d_N \geq \text{Max}(1.2 \ d_d ; 1.5 \ d_c) \)
- thickness: \(t_N \geq 0.60 \ d_c \)

where:

- \(d_d \): As defined in Fig 2.

These dimensions and the core diameter \(d_c \) of the lower rudder stock end are given for guidance only, the determination of the adequate scantlings being left to the Designer.

4.3.5 Washer

For cone couplings with hydraulic arrangements for assembling and disassembling the coupling, a washer is to be fitted between the nut and the rudder gudgeon, having a thickness not less than 0,09 \(d_d \) and an outer diameter not less than 1.3 \(d_d \) or 1.6 \(d_c \), whichever is the greater.

The washer is not needed if the seat surface of the nut is flat and, at least, identical to the contact surface calculated for a washer with the required diameter.

4.3.6 Couplings with key

For cone couplings without hydraulic arrangements for assembling and disassembling the coupling, a key is to be fitted and keyways in both the tapered part and the rudder gudgeon.

The key is to be machined and located on the fore or aft part of the rudder. The key is to be inserted at half-thickness into stock and into the solid part of the rudder.

The key shear area \(a_{k} \) in \(\text{cm}^2 \), is to be not less than:

\[
a_k = \frac{17.55 Q_F}{d_k R_{nst2}}
\]

where:

- \(Q_F \): Design yield moment of rudder stock, in N.m, obtained from the following formula:

\[
Q_F = 0.02664 \frac{d_1^{3}}{k_{1S}}
\]

Where the actual stock diameter is greater than the calculated diameter \(d_1 \), the actual diameter is to be used, without being taken greater than 1,145 \(d_1 \).

- \(d_1 \): Rudder stock diameter, in mm, taken equal to \(d_{r} \), as defined in [3.1.1]
- \(k_{1S} \): Material factor \(k_1 \) for the steel used for the rudder stock
- \(d_k \): Mean diameter of the conical part of the rudder stock at the key, in mm
- \(R_{nst2} \): Minimum yield stress \(R_{nst} \) for the steel used for key.

The effective surface area \(a_{e} \) in \(\text{cm}^2 \), of the key (without rounded edges) between key and rudder stock or cone coupling is not to be less than:

\[
a_e = \frac{5 Q_F}{d_k R_{nst2}}
\]

where:

- \(R_{nst2} \): Minimum yield stress \(R_{nst} \) of the key, stock or coupling material, whichever is less.

It is to be proved that 50% of the design yield moment \(Q_F \) is solely transmitted by friction in the cone couplings. This can be done by calculating the required push-up pressure \(p_{rup} \) and push-up length \(\Delta E \) according to [4.3.2] and [4.3.3] for a torsional moment \(Q'F \) equal to 0.5 \(Q_F \).

In the specific case where the key is considered to transmit the entire rudder torque to the couplings, the scantlings of the key, as well as the push-up force and push-up length, are to be at the discretion of the Society.

4.3.7 Instructions

All necessary instructions for hydraulic assembly and disassembly of the nut, including indication of the values of all relevant parameters, are to be available on board.

4.4 Vertical flange couplings

4.4.1 Vertical flange couplings are to be connected by fitted bolts having a diameter not less than the value obtained, in mm, from the following formula:
The spring constant Z_c for the support in the solepiece (see Fig 3) is to be obtained, in N/m, from the following formula:

$$Z_c = \frac{6.181\ell_{50}}{\ell_{10}^3} \cdot 10^3$$

where:

- ℓ_{10}: Length, in m, of the solepiece
- J_{10}: Moment of inertia about the z axis, in cm4, of the solepiece.

5.1.3 Spade rudders

The rudder structure is to be calculated according to load, shear force and bending moment diagrams shown in Fig 4.

The force per unit length p_R acting on the rudder body is to be obtained, in N/m, from the following formula (see also Fig 4):

$$p_R = p_{R1} + \left(\frac{p_{R2} - p_{R1}}{\ell_{10}}\right)z$$

where:

- z: Position of rudder blade section, in m, taken over ℓ_{10} length
- p_{R2}: Force per unit length, in N/m, obtained at the z position
- p_{R1}: Force per unit length, in N/m, obtained for z equal to zero
- p_{R2}: Force per unit length, in N/m, obtained for z equal to ℓ_{10}.

For this type of rudder, the results of calculations performed according to diagrams shown in Fig 4 may also be obtained from the following formulae:

- maximum bending moment in the rudder stock, in N-m:
 $$M_b = C_4 \left[\ell_{20} + \ell_{10} (2C_1 + C_2)\right]$$
 where C_1 and C_2 are the lengths, in m, defined in Fig 4
- support forces, in N:
 $$F_{A1} = \frac{M_b}{\ell_{50}}$$
 $$F_{A2} = C_R + F_{A1}$$
- maximum shear force in the rudder body, in N:
 $$Q_R = C_R$$

The following equations and definitions are used in the text:

- $d_b = 0.81d_1\sqrt{n_B^k}k_{1S}\frac{k_{1B}}{k_{15}}$
- d_1: Rudder stock diameter, in mm, defined in [3.1.2]
- k_{1S}, k_{1B}: Material factors, defined in [4.1.3]
- n_B: Total number of bolts, which is to be not less than 8.
- $M_b = 0.43d_1^3 \cdot 10^{-3}$
- ℓ_{10}: Height of the rudder blade, in m.
- p_{R1}: Force per unit length, in N/m, obtained at z equal to zero
- p_{R2}: Force per unit length, in N/m, obtained for z equal to ℓ_{10}.

5 Rudder stock and pintle bearings

5.1 Forces on rudder stock and pintle bearings

5.1.1 Support forces F_{Ai}, for $i = 1, 2, 3$ are to be obtained according to [5.1.2] and [5.1.3].

Bureau Veritas - Inland Navigation Rules

February 2019
5.2 Rudder stock bearing

5.2.1 The mean bearing pressure acting on the rudder stock bearing is to be in compliance with the following formula:

\[p_F \leq p_{F,\text{ALL}} \]

where:

\[p_F : \text{Mean bearing pressure acting on the rudder stock bearings, in N/mm}^2, \text{equal to:} \]

\[p_F = \frac{F_{A_i}}{d_m h_m} \]

\[F_{A_i} : \text{Force acting on the rudder stock bearing, in N, defined in Fig 3 and Fig 4} \]

\[d_m : \text{Actual inner diameter, in mm, of the rudder Stock bearings (contact diameter)} \]

\[h_m : \text{Bearing length, in mm (see [5.2.3])} \]

\[p_{F,\text{ALL}} : \text{Allowable bearing pressure, in N/mm}^2, \text{defined in Tab 2.} \]

Values greater than those given in Tab 2 may be accepted by the Society on the basis of specific tests.

\[\frac{F_{A_1}}{J_{40}} = \frac{F_{A_2}}{J_{30}} = \frac{F_{A_3}}{J_{10}} \]

Figure 3: Rudder supported by solepiece

Figure 4: Spade rudders
Table 2: Allowable bearing pressure

<table>
<thead>
<tr>
<th>Bearing material</th>
<th>(p_{F,\text{ALL}}) in N/mm(^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lignum vitae</td>
<td>2.5</td>
</tr>
<tr>
<td>White metal, oil lubricated</td>
<td>4.5</td>
</tr>
<tr>
<td>Synthetic material with hardness between 60 and 70 Shore D</td>
<td>5.5</td>
</tr>
<tr>
<td>Steel, bronze and hot-pressed bronze-graphite materials</td>
<td>7.0</td>
</tr>
</tbody>
</table>

(1) Indentation hardness test at 23°C and with 50% moisture to be performed according to a recognised standard. Type of synthetic bearing materials is to be approved by the Society.

(2) Stainless and wear-resistant steel in combination with stock liner approved by the Society.

5.2.2 An adequate lubrication of the bearing surface is to be ensured.

5.2.3 The length / diameter ratio of the bearing surface is to be not greater than 1.2.

5.2.4 The manufacturing clearance \(t_0 \) on the diameter of metallic supports is to be not less than the value obtained, in mm, from the following formula:

\[
t_0 = \frac{d_{\text{DM}} + 1}{1000}
\]

In the case of non-metallic supports, the tolerances are to be carefully evaluated on the basis of the thermal and distortion properties of the materials employed.

In any case, for non-metallic supports, the tolerance on support diameter is to be not less than 1.5 mm.

5.2.5 Liners and bushes are to be fitted in way of the bearings. Their minimum thickness is to be equal to:

- 8 mm for metallic and synthetic materials
- 22 mm for lignum vitae material.

5.3 Pintle bearings

5.3.1 The mean bearing pressure acting on the gudgeons is to be in compliance with the following formula:

\[
p_r \leq p_{F,\text{ALL}}
\]

where:

- \(p_r \) : Mean bearing pressure acting on the gudgeons, in N/mm\(^2\), equal to:
 \[
p_r = \frac{F_{4i}}{d_{\text{AC}} h_t}
\]
- \(F_{4i} \) : Force acting on the pintle, in N, calculated as specified in [5.1]
- \(d_{\text{AC}} \) : Actual diameter, in mm, of the rudder pintles (contact diameter)
- \(h_t \) : Bearing length, in mm (see [5.3.3])

\(p_{F,\text{ALL}} \) : Allowable bearing pressure, in N/mm\(^2\), defined in Tab 2.

Values greater than those given in Tab 2 may be accepted by the Society on the basis of specific tests.

5.3.2 An adequate lubrication of the bearing surface is to be ensured.

5.3.3 The length / diameter ratio of the bearing surface is not to be less than 1 and not to be greater than 1.2.

5.3.4 The manufacturing tolerance \(t_0 \) on the diameter of metallic supports is to be not less than the value obtained, in mm, from the following formula:

\[
t_0 = \frac{d_{\text{AC}} + 1}{1000}
\]

In the case of non-metallic supports, the tolerances are to be carefully evaluated on the basis of the thermal and distortion properties of the materials employed.

In any case, for non-metallic supports, the tolerance on support diameter is to be not less than 1.5 mm.

5.3.5 The thickness of any liner or bush, in mm, is to be not less than the greater of:

- 0, 01 \(F_{4i} \)
- the minimum thickness defined in [5.2.5].

5.4 Pintles

5.4.1 Rudder pintles are to have a diameter not less than the value obtained, in mm, from the following formula:

\[
d_A = \left(\frac{0.21 V_{AV}}{0.54 V_{AV} + 3 \sqrt{F_{4i} + 30}} \right) d_G
\]

where:

- \(d_A \) : corresponds to \(d_p \) value shown in Fig 2
- \(F_{4i} \) : Force, in N, acting on the pintle, calculated as specified in [5.1.1].

5.4.2 Provision is to be made for a suitable locking device to prevent the accidental loosening of pintles.

5.4.3 The pintles are to have a conical coupling, with a taper on diameter in compliance with [4.3.1].

The conical coupling is to be secured by a nut. The dimensions of the massive part and slogging nut are to be in accordance with the following formulæ:

\[
d_k \geq d_A + 0.6 d_k
\]

\[
t_0 \geq 0.60 d_k
\]

\[
d_k \geq \max (1.2 d_A ; 1.5 d_c)
\]

where:

- \(d_A \) : Pintle diameter defined in [5.4.1]
- \(d_k \) : External diameter, in mm, of the massive part of Fig 2, having the thickness \(t_0 \)
- \(d_m \) : Mean diameter, in mm, of the conical bore, as defined in [4.2.3]
- \(t_0, d_c, t_0, d_m, d_e \) : Geometrical parameters of the coupling, defined in Fig 2.
The above minimum dimensions of the locking nut are only given for guidance, the determination of adequate scantlings being left to the Designer.

5.4.4 The length of the pintle housing in the gudgeon, which corresponds to t_i in Fig 2, is to be not less than the value obtained, in mm, from the following formula:

$$h_i = 0.35 F_A k_i$$

where:

F_A : Force, in N, acting on the pintle, calculated as specified in [5.1.1].

The thickness of pintle housing in the gudgeon, in mm, is to be not less than 0.25 d_A, where d_A is defined in [5.4.1].

5.4.5 The required push-up pressure for pintle bearings, in N/mm², is to be determined by the following formula:

$$p_{req} = 0.4 F_A d_A t_i$$

where:

d_A : Mean diameter, in mm, of the conical bore defined in [4.2.3]

t_i : Geometrical parameter of the coupling defined in Fig 2.

The push-up length is to be calculated according to [4.3.3] using required push-up pressure and pintle bearing properties.

6 Rudder blade scantlings

6.1 General

6.1.1 Application

The requirements in [6.1] to [6.5] apply to streamlined rudders and, when applicable, to rudder blades of single plate rudders.

6.1.2 Rudder blade structure

The structure of the rudder blade is to be such that stresses are correctly transmitted to the rudder stock and pintles. To this end, horizontal and vertical web plates are to be provided. Horizontal and vertical webs acting as main bending girders of the rudder blade are to be suitably reinforced.

6.1.3 Access openings

Streamlined rudders, including those filled with pitch, cork or foam, are to be fitted with plug-holes and the necessary devices to allow their mounting and dismounting.

Access openings to the pintles are to be provided. If necessary, the rudder blade plating is to be strengthened in way of these openings.

The corners of openings intended for the dismantling of pintle or stock nuts are to be rounded off with a radius as large as practicable.

Where the access to the rudder stock nut is closed with a welded plate, a full penetration weld is to be provided.

6.2 Rudder blade plating

6.2.1 Plate thickness

The thickness of each rudder blade plate panel is to be not less than the value obtained, in mm, from the following formula:

$$t_r = 5.5 s \beta \left(T + 0.6 n + \frac{C_k 10^{-6}}{A} \right) + 1.5$$

where:

β : Coefficient equal to:

$$\beta = \frac{1.1 - 0.5 \left(\frac{s}{b_r} \right)^2}{4}$$

to be taken not greater than 1.0 if $b_r/s > 2.5$

s : Length, in m, of the shorter side of the plate panel

b_r : Length, in m, of the longer side of the plate panel.

6.2.2 Thickness of the top and bottom plates of the rudder blade

The thickness of the top and bottom plates of the rudder blade is to be taken as the maximum of:

- the thickness t_r defined in [6.2.1], by considering the relevant values of s and b_r, for both the top and bottom plates
- 1.2 times the thicknesses obtained for the attached side platings around the top and bottom plates, respectively, calculated according to [6.2.1], by considering the relevant values of s and b_r

Where the rudder is connected to the rudder stock with a coupling flange, the thickness of the top plate which is welded in extension of the rudder flange is to be not less than 1.1 times the thickness calculated above.

6.2.3 Web spacing

The spacing between horizontal web plates is to be not greater than 1.20 m.

Vertical webs are to have spacing not greater than twice that of horizontal webs.

6.2.4 Web thickness

Web thickness is to be at least 70% of that required for rudder plating and in no case is it to be less than 8 mm, except for the upper and lower horizontal webs. The thickness of each of these webs is to be uniform and not less than that of the web panel having the greatest thickness t_r, as calculated in [6.2.1]. In any case it is not required that the thickness is increased by more than 20% in respect of normal webs.

When the design of the rudder does not incorporate a main-piece, this is to be replaced by two vertical webs closely spaced, having thickness not less than that obtained from Tab 3.
6.2.5 Thickness of side plating and vertical web plates welded to solid part or to rudder flange

The thickness, in mm, of the vertical web plates welded to the solid part where the rudder stock is housed, or welded to the rudder flange, as well as the thickness of the rudder side plating under this solid part, or under the rudder coupling flange, is to be not less than the value obtained, in mm, from Tab 3.

6.2.6 Welding

The welded connections of blade plating to vertical and horizontal webs are to be in compliance with the applicable requirements of NR216 Materials and Welding.

Where the welds of the rudder blade are accessible only from outside of the rudder, slots on a flat bar welded to the webs are to be provided to support the weld root, to be cut on one side of the rudder only.

6.2.7 Rudder nose plate thickness

Rudder nose plates are to have a thickness not less than:

- 1,25 \(t_f \), without exceeding 22 mm, for \(t_f < 22 \) mm
- \(t_f \), for \(t_f \geq 22 \) mm,

where \(t_f \) is defined in [6.2.1].

The rudder nose plate thickness may be increased on a case by case basis to be considered by the Society.

6.3 Connections of rudder blade structure with solid parts in forged or cast steel

6.3.1 General

Solid parts in forged or cast steel which ensure the housing of the rudder stock or of the pintle are in general to be connected to the rudder structure by means of two horizontal web plates and two vertical web plates.

6.3.2 Minimum section modulus of the connection with the rudder stock housing

The section modulus of the cross-section of the structure of the rudder blade which is connected with the solid part where the rudder stock is housed is to be calculated with respect to the symmetrical axis of the rudder.

The breadth of the rudder plating to be considered for the calculation of this actual section modulus is to be not greater than that obtained, in m, from the following formula:

\[
b = s_v + 2 \frac{H_x}{m}\]

where:

- \(s_v \) : Spacing, in m, between the two vertical webs (see Fig 5)
- \(H_x \) : Vertical distance, in m, between the considered cross-section and the upper edge of the solid part
- \(m \) : Coefficient to be taken, in general, equal to 3.

Where openings for access to the rudder stock nut are not closed by a full penetration welded plate according to [6.1.3], they are to be deducted (see Fig 5).

6.3.3 Calculation of the actual section modulus of the connection with the rudder stock housing

The actual section modulus of the cross-section of the structure of the rudder blade which is connected with the solid part where the rudder stock is housed is to be calculated according to [6.1.3], they are to be deducted (see Fig 5).

6.3.4 Thickness of horizontal web plates

In the vicinity of the solid parts, the thickness of the horizontal web plates, as well as that of the rudder blade plating between these webs, is to be not less than the greater of the values obtained, in mm, from the following formulae:

\[
t_H = 1,2 \ t_f
\]

where:

\[
t_H = 0,045 \frac{d_f^4}{s_H}\]

where:

- \(s_H \) : Spacing, in m, between the two vertical webs (see Fig 5)
- \(d_f \) : Rudder stock diameter, in mm, defined in [3.1.2]
6.4 Connection of the rudder blade with the rudder stock by means of horizontal flanges

6.4.1 Minimum section modulus of the connection

The section modulus of the cross-section of the structure of the rudder blade which is directly connected with the flange, which is made by vertical web plates and rudder blade plating, is to be not less than the value obtained, in cm³, from the following formula:

\[w_s = 1.3 \frac{d_1}{10^{-4}} \]

where \(d_1 \) is the rudder stock diameter \(d_{TF} \), in mm, to be calculated in compliance with the requirements in [3.1.2], taking \(k_1 \) equal to 1.

6.4.2 Actual section modulus of the connection

The section modulus of the cross-section of the structure of the rudder blade which is directly connected with the flange is to be calculated with respect to the symmetrical axis of the rudder.

For the calculation of this actual section modulus, the length of the rudder cross-section equal to the length of the rudder flange is to be considered.

Where the rudder plating is provided with an opening under the rudder flange, the actual section modulus of the rudder blade is to be calculated in compliance with [6.3.3].

6.4.3 Welding of the rudder blade structure to the rudder blade flange

The welds between the rudder blade structure and the rudder blade flange are to be full penetrated (or of equivalent strength) and are to be 100% inspected by means of non-destructive tests.

Where the full penetration welds of the rudder blade are accessible only from outside of the rudder, a backing flat bar is to be provided to support the weld root.

The external fillet welds between the rudder blade plating and the rudder flange are to be of concave shape and their throat thickness is to be at least equal to 0,5 times the rudder blade thickness.

Moreover, the rudder flange is to be checked before welding by non-destructive inspection for lamination and inclusion detection in order to reduce the risk of lamellar tearing.

6.4.4 Thickness of side plating and vertical web plates welded to the rudder flange

The thickness of the vertical web plates directly welded to the rudder flange and the rudder blade flange are to be full penetrated as well as the thickness of the rudder blade thickness.

Moreover, the rudder flange is to be checked before welding by non-destructive inspection for lamination and inclusion detection in order to reduce the risk of lamellar tearing.

6.3.5 Thickness of side plating and vertical web plates welded to the solid part

The thickness of the vertical web plates welded to the solid part where the rudder stock is housed as well as the thickness of the rudder side plating under this solid part is to be not less than the values obtained, in mm, from Tab 3.

6.3.6 Solid part protrusions

The solid parts are to be provided with protrusions. Vertical and horizontal web plates of the rudder are to be butt welded to these protrusions.

These protrusions are not required when the web plate thickness is less than:

- 10 mm for vertical web plates welded to the solid part of the rudder stock coupling of spade rudders
- 20 mm for the other web plates.

\(t_f \) : Thickness, in mm, defined in [6.2.1]

\(d_s \) : Diameter, in mm, to be taken equal to:
- \(d_1 \) for the solid part connected to the rudder stock
- \(d_s \) for the solid part connected to the pintle

\(d_i \) : Rudder stock diameter, in mm, defined in [3.1.2]

\(d_A \) : Pintle diameter, in mm, defined in [5.4.1]

\(s_H \) : Spacing, in mm, between the two horizontal web plates.

Different thickness may be accepted when justified on the basis of direct calculations submitted to the Society for review.

Figure 5: Cross-section of the connection between rudder blade structure and rudder stock housing
6.5 Single plate rudders

6.5.1 Mainpiece diameter

The mainpiece diameter is to be obtained from the formulae in [3.1.1] and [3.1.2].

In any case, the mainpiece diameter is to be not less than the stock diameter.

For spade rudders the lower third may taper down to 0.75 times the stock diameter.

6.5.2 Blade thickness

The blade thickness is to be not less than the value obtained, in mm, from the following formula:

\[t_b = 0.81 s V_{AV} \sqrt{k} + 2.5 \]

where:

- \(t_b \) : Spacing of stiffening arms, in m, to be taken not greater than 1 m (see Fig 6).
- \(s \) : Defined in [6.5.2].

6.5.3 Arms

The thickness of the arms is to be not less than the blade thickness.

The section modulus of the generic section is to be not less than the value obtained, in cm³, from the following formula:

\[Z_A = 0.15 s C_{h1}^2 V_{AV}^2 k \]

where:

- \(C_{h1} \) : Horizontal distance, in m, from the aft edge of the rudder to the centreline of the rudder stock (see Fig 6)
- \(s \) : Defined in [6.5.2].

Figure 6: Single plate rudder

7 Solepiece scantlings

7.1 General

7.1.1 The weight of the rudder is normally supported by a carrier bearing inside the rudder trunk.

In the case of unbalanced rudders having more than one pintle, the weight of the rudder may be supported by a suitable disc fitted in the solepiece gudgeon.

Robust and effective structural rudder stops are to be fitted, except where adequate positive stopping arrangements are provided in the steering gear, in compliance with the requirements of Pt C, Ch 1, Sec 11.

7.2 Scantlings

7.2.1 Bending moment

The bending moment acting on the generic section of the solepiece is to be obtained, in N·m, from the following formula:

\[M_s = F_{A1} x \]

where:

- \(F_{A1} \) : Supporting force, in N, in the pintle bearing, to be determined through a direct calculation; where such a direct calculation is not carried out, this force may be taken equal to:

\[F_{A1} = \frac{C_b}{2} \]

- \(x \) : Distance, in m, defined in Fig 7.

Figure 7: Solepiece geometry

7.2.2 Strength checks

For the generic section of the solepiece within the length \(l_{50} \) defined in Fig 7, it is to be checked that:

\[\sigma_B \leq \sigma_{B,ALL} \]
\[\tau \leq \tau_{ALL} \]

where:

- \(\sigma_B \) : Bending stress to be obtained, in N/mm², from the following formula:

\[\sigma_B = \frac{M_s}{W_z} \]
Pt B, Ch 7, Sec 1

\[\tau = \frac{FA1}{A_2} \]

\(M_b \) : Bending moment at the section considered, in Nm, defined in [7.2.1]

\(FA1 \) : Force, in N, defined in [7.2.1]

\(W_Z \) : Section modulus, in cm³, around the vertical axis Z (see Fig 7)

\(A_S \) : Shear sectional area in Y direction, in mm²

\(\sigma_{B,ALL} \) : Allowable bending stress, in N/mm², equal to:

\[\sigma_{B,ALL} = \frac{80}{k_1} \text{ N/mm}^2 \]

\(\tau_{ALL} \) : Allowable shear stress, in N/mm², equal to:

\[\tau_{ALL} = \frac{48}{k_1} \text{ N/mm}^2 \]

7.2.3 Minimum section modulus around the horizontal axis

The section modulus around the horizontal axis Y (see Fig 7) is to be not less than the value obtained, in cm³, from the following formula:

\[W_Y = 0.5 W_Z \]

where:

\(W_Z \) : Section modulus, in cm³, around the vertical axis Z (see Fig 7).

8 Steering nozzles

8.1 General

8.1.1 The requirements of this Article apply to scantling steering nozzles for which the power transmitted to the propeller is less than the value obtained, in kW, from the following formula:

\[p = \frac{16900}{d_{m}^{3}} \]

where:

\(d_{m} \) : Inner diameter of the nozzle, in m.

Nozzles for which the power transmitted is greater than the value obtained from the above formula are considered on a case-by-case basis.

The following requirements may apply also to fixed nozzle scantlings.

8.1.2 Nozzles normally consist of a double skin cylindrical structure stiffened by ring webs and other longitudinal webs placed perpendicular to the nozzle.

At least two ring webs are to be fitted, one of which is to be placed in way of the axis of rotation of the nozzle.

For nozzles with an inner diameter \(d_{N} \) exceeding 3 m, the number of ring webs is to be suitably increased.

8.1.3 The section modulus \(W_{N} \), in cm³, of the nozzle double skin profile (half nozzle cross section) around its neutral axis parallel to the center line, is not to be less than:

\[W_{N} = 0.29 n_N d^2 b V_{AV}^2 \]

where:

\(d \) : Inner diameter of nozzle, in m

\(b \) : Length of nozzle, in m

\(n_N \) : Coefficient taken equal to:

- 1,0 for steering nozzles
- 0,7 for fixed nozzles.

8.1.4 Care is to be taken in the manufacture of the nozzle to ensure the welded connection between plating and webs.

8.1.5 The internal part of the nozzle is to be adequately protected against corrosion.

8.2 Nozzle plating and internal diaphragms

8.2.1 The thickness of the inner plating of the nozzle is to be not less than the value obtained, in mm, from the following formula:

\[t_r = (0.085 \sqrt{P d_m} + 9.65) \text{, } k \]

where:

\(P, d_m \) : Defined in [8.1.1].

The thickness \(t_r \) is to be extended to a length, across the transverse section containing the propeller blade tips, equal to one fourth of the total nozzle length.

Outside this length, the thickness of the inner plating is to be not less than \((t_r - 7) \text{ mm}\) and, in any case, not less than 7 mm.

8.2.2 The thickness of the outer plating of the nozzle is to be not less than \((t_r - 9) \text{ mm}\), where \(t_r \) is defined in [8.2.1] and, in any case, not less than 7 mm.

8.2.3 The thicknesses of ring webs and longitudinal webs are to be not less than \((t_r - 7) \text{ mm}\), where \(t_r \) is defined in [8.2.1] and, in any case, not less than 7 mm.

However, the thickness of the ring web, in way of the headbox and pintle support structure, is to be not less than \(t_r \).

The Society may consider reduced thicknesses where an approved stainless steel is used, in relation to its type.

8.3 Nozzle stock

8.3.1 The diameter of the nozzle stock is to be not less than the value obtained, in mm, from the following formula:

\[d_{NTF} = 6.42 (M_T k_1)^{1/3} \]

where:

\(M_T \) : Torque, to be taken as the greater of those obtained, in Nm, from the following formulae:

\[M_{TAV} = 0.3 S_{AV} a \]

\[M_{TAD} = S_{AD} b \]

\(S_{AV} \) : Force, in N, equal to:

\[S_{AV} = 43.7 V_{AV}^2 A_N \]

\(S_{AD} \) : Force, in N, equal to:

\[S_{AD} = 58.3 V_{AD}^2 A_N \]

\(A_N \) : Area, in m², equal to:

\[A_N = 1.35 A_{IN} + A_{UN} \]

\(A_{IN} \) : Area, in m², equal to:

\[A_{IN} = L_{A} d_{A} \]
\[A_{2N} : \text{Area, in } m^2, \text{equal to:} \]
\[A_{2N} = L_1 H_1 \]
\(a, b, L_M, d_M, L_1, H_1: \text{Geometrical parameters of the nozzle, in } m, \text{defined in Fig 8.}\)

The diameter of the nozzle stock may be gradually tapered above the upper stock bearing so as to reach, in way of the tiller or quadrant, the value obtained, in mm, from the following formula:
\[d_{NT} = 0.75 \cdot d_{NTF} \]

Figure 8 : Geometrical parameters of the nozzle

![Diagram of nozzle geometry](image)

8.4 Pintles

8.4.1 The diameter of the pintles is to be not less than the value obtained, in mm, from the following formula:
\[d_k = \left(\frac{0.19 V_{AV}}{0.54 V_{AV} + 3 \sqrt{S_{AV}^3 + 30}} \right) \sqrt{K_1} \]

where:
\[S_{AV}: \text{Defined in [8.3.1].} \]

8.4.2 The length/diameter ratio of the pintle is not to be less than 1.0 and not to be greater than 1.2.

Smaller values of \(h_A\) may be accepted provided that the pressure on the gudgeon bearing \(p_F\) is in compliance with the following formula:
\[p_F \leq p_{F, ALL} \]

where:
\[p_F: \text{Mean bearing pressure acting on the gudgeon, to be obtained in } N/mm^2, \text{from the following formula:} \]
\[p_F = \frac{0.66 S'}{d'_A h'_A} \]
\[S': \text{The greater of the values } S_{AV} \text{ and } S_{AD}, \text{in } N, \text{defined in [8.3.1]} \]
\[d'_A: \text{Actual pintle diameter, in } mm \]
\[h'_A: \text{Actual bearing length of pintle, in } mm \]
\[p_{F, ALL}: \text{Allowable bearing pressure, in } N/mm^2, \text{defined in Tab 2.} \]

8.4.2 The length/diameter ratio of the pintle is not to be less than 1.0 and not to be greater than 1.2.

8.5 Nozzle coupling

8.5.1 Diameter of coupling bolts

The diameter of the coupling bolts is to be not less than the value obtained, in mm, from the following formula:
\[d_k = 0.62 \cdot \frac{d^2_{NTF} k_{1S}}{n_b e_M k_1S} \]

where:
\[d_{NTF}: \text{Diameter of the nozzle stock, in } mm, \text{defined in [8.3.1]} \]
\[k_{1S}: \text{Material factor } k_1 \text{ for the steel used for the stock} \]
\[k_{1B}: \text{Material factor } k_1 \text{ for the steel used for the bolts} \]
\[e_M: \text{Mean distance, in } mm, \text{from the bolt axles to the longitudinal axis through the coupling centre (i.e. the centre of the bolt system)} \]
\[n_b: \text{Total number of bolts, which is to be not less than:} \]
- 4 if \(d_{NTF} \leq 75 \text{ mm}\)
- 6 if \(d_{NTF} > 75 \text{ mm.}\)

Non-fitted bolts may be used provided that, in way of the mating plane of the coupling flanges, a key is fitted having a section of \((0.25 \cdot d_{NT} \times 0.10 \cdot d_{NT}) \text{ mm}^2\), where \(d_{NT}\) is defined in [8.3.1], and keyways in both the coupling flanges, and provided that at least two of the coupling bolts are fitted bolts.

The distance from the bolt axes to the external edge of the coupling flange is to be not less than 1.2 \(d_{B}.\)

8.5.2 Thickness of coupling flange

The thickness of the coupling flange is to be not less than the value obtained, in mm, from the following formula:
\[t_F = \frac{d_B k_{1F}}{k_{1B}} \]

where:
\[d_B: \text{Bolt diameter, in } mm, \text{defined in [8.5.1]} \]
\[k_{1B}, k_{1F}: \text{Material factor } k_1 \text{ for the steel used for the bolts} \]
\[k_{1F}: \text{Material factor } k_1 \text{ for the steel used for the coupling flange.} \]

8.5.3 Push up length of cone couplings with hydraulic arrangements for assembling and disassembling the coupling

It is to be checked that the push up length \(\Delta_e\) of the nozzle stock tapered part into the boss is in compliance with the following formula:
\[\Delta_0 < \Delta_e < \Delta_1 \]

where:
\[\Delta_0: \text{The greater of:} \]
- 2 if \(\Delta_e \leq 6 \text{ mm}\)
- 2 if \(\Delta_e > 6 \text{ mm}\)

\[\Delta_1 = \frac{2 \gamma + 5 \gamma d_{RMT} R_{MT}}{1 + \rho_1} \]

\[\Delta_1 = 8 \times 10^{-6} c (1 + \rho_1) \]
8.5.4 Locking device

A suitable locking device is to be provided to prevent the accidental loosening of nuts.

9 Azimuth propulsion system

9.1 General

9.1.1 Arrangement

The azimuth propulsion system is constituted by the following sub-systems (see Fig 9):

- the steering unit
- the bearing
- the hull supports
- the rudder part of the system
- the pod, which contains the electric motor in the case of a podded propulsion system.

9.1.2 Application

The requirements of this Article apply to the scantlings of the hull supports, the rudder part and the pod.

The steering unit and the bearing are to comply with the requirements in Pt C, Ch 1, Sec 11.

9.2 Arrangement

9.2.1 Plans to be submitted

In addition to the plans showing the structural arrangement of the pod and the rudder part of the system, the plans showing the arrangement of the azimuth propulsion system supports are to be submitted to the Society for review. The scantlings of the supports and the maximum loads which act on the supports are to be specified in these drawings.

9.2.2 Locking device

The azimuth propulsion system is to be mechanically lockable in a fixed position, in order to avoid rotations of the system and propulsion in undesirable directions in the event of damage.

9.3 Design loads

9.3.1 The lateral pressure to be considered for scantling of plating and ordinary stiffeners of the azimuth propulsion system is to be determined for an orientation of the system equal to the maximum angle at which the azimuth propulsion system can be oriented on each side when the vessel navigates at its maximum speed.

The total force which acts on the azimuth propulsion system is to be obtained by integrating the lateral pressure on the external surface of the system.

The calculations of lateral pressure and total force are to be submitted to the Society for information.

9.4 Plating

9.4.1 Plating of the rudder part of the azimuth propulsion system

The thickness of plating of the rudder part of the azimuth propulsion system is to be not less than that obtained, in mm, from the formulae in [6.2.1], in which the term C_d/A is to be replaced by the lateral pressure calculated according to [9.3].

9.4.2 Plating of the pod

The thickness of plating of the pod is to be not less than that obtained, in mm, from the following formula:

$$t = s \sqrt{p}$$

where:

- s : Stiffener spacing, in m
- p : Design lateral pressure, in kN/m², calculated according to [9.3].
9.4.3 Webs
The thickness of webs of the rudder part of the azimuth propulsion system is to be determined according to [6.2.4], where the lateral pressure is to be calculated according to [9.3].

9.5 Ordinary stiffeners

9.5.1 Ordinary stiffeners of the pod
The scantlings of ordinary stiffeners of the pod are to be not less than those obtained from the following formulae:

Net section modulus, in cm³:
\[w = \frac{p}{m(226/k)s^3} \times 10^3 \]

Net shear sectional area, in cm²:
\[A_{sh} = \frac{10 \times p}{226/k} s^3 \]

where:
- **s, p**: Parameters defined in [9.4.2]
- **ℓ**: Unsupported span of stiffener, in m
- **m**: Boundary coefficient taken equal to 8.

9.6 Primary supporting members

9.6.1 Analysis criteria
The scantlings of primary supporting members of the azimuth propulsion system are to be obtained through direct calculations, to be carried out according to the following requirements:
- the structural model is to include the pod, the rudder part of the azimuth propulsion system, the bearing and the hull supports
- the boundary conditions are to represent the connections of the azimuth propulsion system to the hull structures
- the loads to be applied are those defined in [9.6.2].

The direct calculation analyses (structural model, load and stress calculation, strength checks) carried out by the Designer are to be submitted to the Society for information.

9.6.2 Loads
The following loads are to be considered in the direct calculation of the primary supporting members of the azimuth propulsion system:
- gravity loads
- buoyancy
- maximum loads calculated for an orientation of the system equal to the maximum angle at which the azimuth propulsion system can be oriented on each side when the vessel navigates at its maximum speed
- maximum loads calculated for the possible orientations of the system greater than the maximum angle at the relevant speed (see [9.1.3])
- maximum loads calculated for the crash stop of the vessel obtained through inversion of the propeller rotation
- maximum loads calculated for the crash stop of the vessel obtained through a 180° rotation of the pod.

9.6.3 Strength check
It is to be checked that the Von Mises equivalent stress σₑ in primary supporting members, calculated, in N/mm², for the load cases defined in [9.6.2], is in compliance with the following formula:
\[σₐ ≤ σ₈ \]

where:
- **σ₈**: Allowable stress, in N/mm², to be taken equal to 0.55 Rₑf
- **Rₑf**: Minimum yield stress, in N/mm², of the specified steel. Rₑf is not to exceed the lower of 0.7 Rₑ and 450 N/mm²
- **Rₑ**: Minimum ultimate tensile strength, in N/mm², of the steel used.

9.7 Hull supports of the azimuth propulsion system

9.7.1 Analysis criteria
The scantlings of hull supports of the azimuth propulsion system are to be obtained through direct calculations, to be carried out in accordance with the requirements in [9.6.1].

9.7.2 Loads
The loads to be considered in the direct calculation of the hull supports of the azimuth propulsion system are those specified in [9.6.2].

9.7.3 Strength check
It is to be checked that the Von Mises equivalent stress σₑ in hull supports, in N/mm², calculated for the load cases defined in [9.6.2], is in compliance with the following formula:
\[σₐ ≤ σ₈ \]

where:
- **σ₈**: Allowable stress, in N/mm², equal to:
 \[σ₈ = 65 / k \]
- **k**: Material factor, defined in Ch 2, Sec 3, [2.4].

Values of σₑ greater than σ₈ may be accepted by the Society on a case-by-case basis, depending on the localisation of σₑ and on the type of direct calculation analysis.
SECTION 2 BULWARKS AND GUARD RAILS

Symbols

\[
\begin{align*}
L & : \text{Rule length, in m, defined in Ch 1, Sec 2, \[2.1\]} \\
t & : \text{Gross thickness, in mm.}
\end{align*}
\]

1 General

1.1 Introduction

1.1.1 The requirements of this Section apply to the arrangement and scantling of bulwarks and guard rails provided at the boundaries of decks and work stations.

1.1.2 The outer edges of decks as well as work stations where persons might fall more than 1 m, shall be fitted with bulwarks or guard rails.

1.1.3 In case of non-propelled cargo carriers without accommodation, bulwarks of guardrails shall not be required where:
 a) foot-guards have been fitted to the outer edges of the decks and side decks, and
 b) hand rails have been fitted to the coamings

1.1.4 In case of vessels with flush or trunk decks, it shall not be required that guardrails be fitted directly on the outer edges of those decks and side decks where:
 a) the passageways run over those decks, and
 b) the passageways and work stations on those decks are surrounded by fixed guard rails

1.1.5 Requirements other than those set out in this Section may be called for by national or international authorities, specially for vessels assigned the range of navigation \(\text{IN}(0,6 < x \leq 2)\), in order to allow the crew to move about under adequate safety conditions.

2 Bulwarks

2.1 General

2.1.1 The height of bulwarks is to be at least 1 m from the deck. This height may be reduced subject to the agreement of the Society where required by operational necessities.

2.1.2 As a rule, plate bulwarks are to be stiffened at the upper edge by a suitable bar and supported either by stays or plate brackets spaced not more than 2 m apart. Bulwark stays are to be aligned with the beams located below or are to be connected to them by means of local transverse stiffeners.

As an alternative, the lower end of the stay may be supported by a longitudinal stiffener.

2.1.3 Where bulwarks are cut completely, the scantlings of stays or brackets are to be increased with respect to those given in \[2.2.2\].

2.1.4 Openings in bulwarks are to be arranged so that the protection of the crew is to be at least equivalent to that provided by the horizontal courses in [3.1.4].

2.2 Scantlings

2.2.1 Plating thickness

The bulwark thickness, in mm, is not to be less than:

\[
\begin{align*}
t & = 4 \quad \text{for } L \leq 30 \text{ m} \\
t & = 5 \quad \text{for } 30 \text{ m} < L < 90 \text{ m} \\
t & = 6 \quad \text{for } L > 90 \text{ m}.
\end{align*}
\]

2.2.2 Scantlings of stays

The gross section modulus of stays in way of the lower part of the bulwark is to be not less than the value obtained, in cm\(^3\), from the following formula:

\[
w = 40 s (1 + 0.01 L_s) h_B^2
\]

where:

\[
\begin{align*}
L_s & : \text{Length, in m, defined as:} \\
L_s & = \min (L ; 100) \\
s & : \text{Spacing of stays, in m} \\
h_B & : \text{Height of bulwark, in m, measured between its upper edge and the deck}
\end{align*}
\]

The actual section of the connection between stays and deck structures is to be taken into account when calculating the above section modulus.

3 Guard rails

3.1 General

3.1.1 Guard rails are to be at least 1 m high and shall comprise a hand rail, intermediate rails and a foot-guard. This height may be reduced subject to the agreement of the Society where required by operational necessities.

3.1.2 The spacing between railing stanchions is not to be greater than 2 m.

3.1.3 The foot-guard is to rise at least 50 mm above the weather deck.

The distance between inner edge of foot-guard and inner edge of the stanchion is not be greater than 100 mm.

3.1.4 The opening below the lower course is not to be greater than 230 mm. The other courses are not to be more than 380 mm apart.
3.2 Scantlings

3.2.1 Guard rails shall maintain loads in such a way that deflection without permanent deformation is not to exceed 50 mm in the centre between two stanchions when a load of 500 N/m is acting on the railing.

3.2.2 Hand rails are to be of circular section 40 to 50 mm in diameter.

3.2.3 Adequate strength of guard rails shall be proved by means of a direct calculation submitted to the Society for review, or the design shall be in compliance with an appropriate design standard recognised by the Society.
SECTION 3 PROPELLER SHAFT BRACKETS

Symbols

\[F_C : \text{Force, in kN, taken equal to:} \]
\[F_C = \left(\frac{2\pi N}{60} \right)^2 R_p m \]

\[m : \text{Mass of a propeller blade, in t} \]

\[N : \text{Number of revolutions per minute of the propeller} \]

\[R_p : \text{Distance, in m, of the center of gravity of a blade in relation to the rotation axis of the propeller} \]

\[\sigma_{\text{ALL}} : \text{Allowable stress, in N/mm}^2: \]
\[\sigma_{\text{ALL}} = 70 \text{ N/mm}^2 \]

\[w_A : \text{Section modulus, in cm}^3, \text{of the arm at the level of the connection to the hull with respect to a transversal axis} \]

\[w_B : \text{Section modulus, in cm}^3, \text{of the arm at the level of the connection to the hull with respect to a longitudinal axis} \]

\[A : \text{Sectional area, in cm}^2, \text{of the arm} \]

\[A_S : \text{Shear sectional area, in cm}^2, \text{of the arm} \]

\[d_p : \text{Propeller shaft diameter, in mm, measured inside the liner, if any.} \]

1 General

1.1

1.1.1 General

Propeller shafting is either enclosed in bossing or independent of the main hull and supported by shaft brackets.

1.2 Strength check

1.2.1 General

The strength check is to be carried out according to [2], [3] or [4].

1.2.2 Vibration analysis

A vibration analysis according to Pt C, Ch 1, Sec 9 is recommended to be performed for single arm propeller shaft brackets.

2 Double arm propeller shaft brackets

2.1 General

2.1.1 Both arms of detached propeller brackets are to form an angle \(\alpha \) to each other which differs from the angle included between propeller blades. Where 3- or 5-bladed propellers are fitted, it is recommended that the angle \(\alpha \) should be approximately 90°. Where 4-bladed propellers are fitted, the angle \(\alpha \) should be approximately 70° or 110°.

Where possible, the axes of the arms should intersect in the axis of the propeller shaft.

Exceptions to this will be considered by the Society on a case by case basis.

2.1.2 Scantlings of arms

The moment in the arm, in kN.m, is to be obtained from the following formula:

\[M = \frac{F_C (d_1 \sin \alpha \beta + L - \ell)}{\sin \alpha} \]

where:

\(\alpha \) : Angle between the two arms

\(\beta \) : Angle defined in Fig 1

\(d_1 \) : Distance, in m, defined in Fig 1

\(L, \ell \) : Lengths, in m, defined in Fig 2.
It is to be checked that the bending stress σ_b, the compressive stress σ_N and the shear stress τ are in compliance with the following formula:

$$\sqrt{(\sigma_b + \sigma_N)^2 + 3\tau^2} \leq \sigma_{ALL}$$

where:

$$\sigma_b = \frac{M}{W_A} 10^3$$

$$\sigma_N = 10F_C \frac{L \sin \beta}{A_f \sin \alpha}$$

$$\tau = 10F_C \frac{L \cos \beta}{A_f \sin \alpha}$$

2.1.3 Scantlings of propeller shaft bossing
The length of the propeller shaft bossing is to be not less than the length of the aft sterntube bearing bushes (see Pt C, Ch 1, Sec 7).

The thickness of the propeller shaft bossing is to be not less than $0.33 d_P$.

2.1.4 Bracket arm attachments
The bracket arms are to penetrate the hull plating and be connected to deep floors or girders of increased thickness.

Moreover, in way of the attachments, the shell plating is to be increased in thickness by 50% or fitted with a doubling plate of same thickness, and suitably stiffened.

The securing of the arms to the hull structure is to prevent any displacement of the brackets with respect to the hull.

3 Single arm propeller shaft brackets

3.1 Scantlings

3.1.1 This type of propeller shaft bracket consists of one arm.

3.1.2 Scantlings of arms

The moment in case of a vertical single arm, in kN.m, is to be obtained from the following formula:

$$M = d_2 F_C \frac{1}{\ell}$$

where:

d_2 : Length of the arm, in m, measured between the propeller shaft axis and the hull

L, ℓ : Lengths, in m, defined in Fig 2.

It is to be checked that the bending stress σ_b and the shear stress τ are in compliance with the following formula:

$$\sqrt{(\sigma_b + \sigma_N)^2 + 3\tau^2} \leq \sigma_{ALL}$$

where:

$$\sigma_b = \frac{M}{W_A} 10^3$$

$$\tau = 10F_C \frac{L \cos \beta}{A_f \sin \alpha}$$

3.1.3 Scantlings of propeller shaft bossing

The length of the propeller shaft bossing is to be not less than the length of the aft sterntube bearing bushes (see Pt C, Ch 1, Sec 7).

The thickness of the propeller shaft bossing is to be not less than $0.33 d_P$.

3.1.4 Bracket arm attachments

The connection of bracket arms to the hull structure is to comply with [2.1.4].

4 Bossed propeller shaft brackets

4.1 General

4.1.1 Where bossed propeller shaft brackets are fitted, their scantlings are to be considered by the Society on a case by case basis.

4.1.2 Scantling of the boss

The length of the boss is to be not less than the length of the aft sterntube bearing bushes (see Pt C, Ch 1, Sec 7).

The thickness of the boss, in mm, is to be not less than $0.33 d_P$.

The aft end of the bossing is to be adequately supported.

4.1.3 Scantling of the end supports

The scantlings of end supports are to be specially considered. Supports are to be adequately designed to transmit the loads to the main structure.

End supports are to be connected to at least two deep floors of increased thickness or connected to each other within the vessel.

4.1.4 Stiffening of the boss plating

Stiffening of the boss plating is to be specially considered. At the aft end, transverse diaphragms are to be fitted at every frame and connected to floors of increased scantlings.

At the fore end, web frames spaced not more than four frames apart are to be fitted.
SECTION 4 EQUIPMENT

Symbols

\[P \] : Required bow anchor mass, in kg
\[P_i \] : Increased required bow anchor mass, in kg
\[L_M \] : Maximum length of the hull, in m, excluding rudder and bowsprit
\[R \] : Minimum breaking load of anchor chain cable, in kN
\[R_s \] : Minimum breaking load of mooring cables, in kN.

1 General

1.1 General requirements

1.1.1 The requirements in this Section provide the equipment of anchors, chain cables and ropes for ranges of navigation \(\text{IN}(0) \), \(\text{IN}(0,6) \) and \(\text{IN}(0,6 < x < 2) \) defined in Part A, Chapter 2.

1.1.2 Vessels have to be equipped with anchors, chain cables and ropes complying with the applicable requirements of NR216 Materials and Welding.

1.1.3 The required equipment of anchors, chain cables, ropes and cables of the vessels trading on the inland waterways has to be determined according to [2] to [4]. The actual Regulations of the Local Authority have to be observed.

1.1.4 The Society, taking into account the conditions on the waterway concerned, may consent to a reduction in equipment for vessel intended for use only in a certain waterway system or area of inland water provided that a note of this waterway system or area of inland water is appended to the character of classification.

1.1.5 Barges to be carried aboard seagoing ships
Barges to be carried aboard seagoing ships are to be exempted from the anchor equipment requirements.

1.1.6 Multi-hull vessels
The breadth B to be considered for the application of these Rules to multi-hull vessels is to be determined using the following formula:

\[B = \sum B_i \]

where \(B_i \) is the individual breadth of each hull.

2 Anchors

2.1 General

2.1.1 Anchors are to be of an approved type.

2.1.2 Cast iron anchors shall not be permitted.

2.1.3 The mass of the anchors shall stand out in relief in a durable manner.

2.1.4 Anchors having a mass in excess of 50 kg shall be equipped with windlasses.

2.2 Bow anchors

2.2.1 Cargo carriers
The total mass \(P \) of the bow anchors of cargo carriers shall be calculated by the following formula:

\[P = k \times B \times T \]

where:

\[k \] : Coefficient defined in Tab 1.

2.2.2 Passenger vessels and other vessels without deadweight measurement
Passenger vessels and vessels not intended for the carriage of goods, apart from pushers, shall be fitted with bow anchors whose total mass \(P \) is obtained from the following formula:

\[P = k \times B \times T \]

where:

\[k \] : Coefficient corresponding to [2.2.1] but where, in order to obtain the value of the empirical coefficient \(c \), the maximum displacement, in m\(^3\), shall be taken instead of the deadweight tonnage.

2.2.3 Increased bow anchor mass
For passenger vessels and for vessels having a large windage area (container vessels), the bow anchor mass is to be increased as follows:

\[P_i = P + 4 \times A_t \]
where:

\(A_t \) : Transverse profile view (windage area) of the hull above waterline at the draught \(T \), in m².

For calculating the area \(A_t \), all superstructures, deckhouses and cargos (e.g. containers) having a breadth greater than \(B/4 \) are to be taken into account.

2.2.4 Range of navigation IN(0,6)

For the range of navigation \(\text{IN}(0,6) \), where the current velocity is lower than 6 km/h, the anchor masses according to [2.2.1] to [2.2.3] may be reduced by 13%.

2.2.5 Range of navigation IN(0)

For the range of navigation \(\text{IN}(0) \), the anchor mass is equal to 50% of the values determined according to [2.2.1] to [2.2.3].

2.3 Stern anchors

2.3.1 Stern anchors are to be fitted in compliance with the requirements [2.3.4] to [2.3.7].

2.3.2 The requirement [2.3.1] may be waived by the Society depending on specified operating conditions regarding for instance current speed or vessel positioning.

2.3.3 Self-propelled vessels shall be fitted with stern anchors whose total weight is equal to 25% of the mass \(P \) calculated in accordance with [2.2].

2.3.4 Vessels whose maximum length \(L_M \) exceeds 86 m shall, however, be fitted with stern anchors whose total mass is equal to 50% of the mass \(P \) or \(P_i \) calculated in accordance with [2.2].

2.3.5 Pushers

Vessels intended to propel rigid convoys not more than 86 m in length shall be fitted with stern anchors whose total mass is equal to 25% of the maximum mass \(P \) calculated in accordance with [2.2.1] for the largest formation considered as a nautical unit.

2.3.6 Vessels intended to propel downstream rigid convoys that are longer than 86 m shall be fitted with stern anchors whose total mass equals 50% of the greatest mass \(P \) calculated in accordance with [2.2.1] for the largest formation considered as a nautical unit.

2.3.7 The following vessels are exempted from the stern anchor requirement:

- vessels for which the stern anchor mass will be less than 150 kg
- vessels intended to operate on reservoirs, lakes and barges.

2.4 Mass reduction

2.4.1 The anchor masses established in accordance with [2.2] and [2.3] may be reduced for certain special anchors. The types of anchors given in Tab 2 have so far been recognized by the Society as “high-holding-power anchors”.

Table 2: Recognized types of anchors

<table>
<thead>
<tr>
<th>Type of anchors</th>
<th>Mass reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>HA - DU</td>
<td>30%</td>
</tr>
<tr>
<td>D’Hone Special</td>
<td>30%</td>
</tr>
<tr>
<td>Pool 1 (hollow)</td>
<td>35%</td>
</tr>
<tr>
<td>Pool 2 (solid)</td>
<td>40%</td>
</tr>
<tr>
<td>De Biesbosch - Danforth</td>
<td>50%</td>
</tr>
<tr>
<td>Vicinay - Danforth</td>
<td>50%</td>
</tr>
<tr>
<td>Vicinay AC 14</td>
<td>25%</td>
</tr>
<tr>
<td>Vicinay Type 1</td>
<td>45%</td>
</tr>
<tr>
<td>Vicinay Type 2</td>
<td>45%</td>
</tr>
<tr>
<td>Vicinay Type 3</td>
<td>40%</td>
</tr>
<tr>
<td>Stockes</td>
<td>35%</td>
</tr>
<tr>
<td>D’Hone - Danforth</td>
<td>50%</td>
</tr>
<tr>
<td>Schmitt high holding anchor</td>
<td>40%</td>
</tr>
<tr>
<td>SHI high holding anchor, type ST (standard)</td>
<td>30%</td>
</tr>
<tr>
<td>SHI high holding anchor, type FB (fully balanced)</td>
<td>30%</td>
</tr>
<tr>
<td>Klinsmann anchor</td>
<td>30%</td>
</tr>
<tr>
<td>HA-DU-POWER Anchor</td>
<td>50%</td>
</tr>
</tbody>
</table>

2.5 Number of anchors

2.5.1 The total mass \(P \) specified for bow anchors may be distributed among one or two anchors. It may be reduced by 15% where the vessel is equipped with only a single bow anchor and the mooring pipe is located amidships.

The required total weight of stern anchors for pushers and vessels whose maximum length exceeds 86 m may be distributed between one or two anchors.

The mass of the lightest anchor should be not less than 45% of that total mass.

3 Chain cables

3.1 General

3.1.1 Chains true to gauge size are to be used as anchor chain cables.

3.1.2 Short-link or stud-link chain cables may be used as anchor chain cables.
3.2 Minimum breaking loads

3.2.1 The minimum breaking load of chain cables shall be calculated by the formulae given in Tab 3. For the breaking loads of short-link chains and stud-link chains, see Tab 4 and Tab 5, respectively.

3.2.2 Where the anchors have a mass greater than that required in [2.2.1] to [2.2.4], the breaking load of the anchor chain cable shall be determined as a function of that highest anchor mass.

3.2.3 The attachments between anchor and chain shall withstand a tensile load 20% higher than the tensile strength of the corresponding chain.

3.3 Length of chain cables

3.3.1 Bow anchor chain cables
For the minimum length of bow anchor chain cables, see Tab 6.

3.3.2 Stern anchor chain cables
The length of stern anchor chain cables is not to be less than 40 m. However, where vessels need to stop facing downstream they are to be equipped with a stern anchor chain of not less than 60 m in length.

3.3.3 Steel wire ropes
In special cases, steel wire ropes may be permitted instead of anchor chain cables, for vessels intended to operate in stretches of fresh waters corresponding to $1 < x < 1.2$. The wire ropes are to have at least the same breaking strength as the required anchor chain cables, but shall be 20% longer.

A short length of chain cable is to be fitted between the wire rope and the anchor, having a length equal at least to the distance from the anchor in the stowed position to the winch.

Table 3: Minimum breaking loads R of chain cables

<table>
<thead>
<tr>
<th>Anchor mass (kg)</th>
<th>R (kN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤ 500</td>
<td>$R = 0.35 \frac{P'}{500}$</td>
</tr>
<tr>
<td>> 500 and ≤ 2000</td>
<td>$R = \left(0.35 - \frac{P'}{1500}\right)P'$</td>
</tr>
<tr>
<td>> 2000</td>
<td>$R = 0.25 P'$</td>
</tr>
</tbody>
</table>

Note 1:

P': Theoretical mass of each anchor determined in accordance with [2.2] and [2.3].

Table 4: Breaking loads, in kN, for short-link chain cables

<table>
<thead>
<tr>
<th>Chain diameter (mm)</th>
<th>Grade SL₁</th>
<th>Grade SL₂</th>
<th>Grade SL₃</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Proof load</td>
<td>Breaking load</td>
<td>Proof load</td>
</tr>
<tr>
<td>6,0</td>
<td>6,5</td>
<td>13</td>
<td>9</td>
</tr>
<tr>
<td>8,0</td>
<td>12,0</td>
<td>24</td>
<td>17</td>
</tr>
<tr>
<td>10,0</td>
<td>18,5</td>
<td>37</td>
<td>26</td>
</tr>
<tr>
<td>11,0</td>
<td>22,5</td>
<td>45</td>
<td>32</td>
</tr>
<tr>
<td>12,5</td>
<td>29,0</td>
<td>58</td>
<td>41</td>
</tr>
<tr>
<td>14,5</td>
<td>39,0</td>
<td>78</td>
<td>55</td>
</tr>
<tr>
<td>16,0</td>
<td>47,5</td>
<td>95</td>
<td>67</td>
</tr>
<tr>
<td>17,5</td>
<td>56,5</td>
<td>113</td>
<td>80</td>
</tr>
<tr>
<td>19,0</td>
<td>67,0</td>
<td>134</td>
<td>95</td>
</tr>
<tr>
<td>20,5</td>
<td>78,0</td>
<td>156</td>
<td>111</td>
</tr>
<tr>
<td>22,0</td>
<td>90,0</td>
<td>180</td>
<td>128</td>
</tr>
<tr>
<td>24,0</td>
<td>106</td>
<td>212</td>
<td>151</td>
</tr>
<tr>
<td>25,5</td>
<td>120</td>
<td>240</td>
<td>170</td>
</tr>
<tr>
<td>27,0</td>
<td>135</td>
<td>270</td>
<td>192</td>
</tr>
<tr>
<td>28,5</td>
<td>150</td>
<td>300</td>
<td>213</td>
</tr>
<tr>
<td>30,0</td>
<td>166</td>
<td>332</td>
<td>236</td>
</tr>
<tr>
<td>32,0</td>
<td>189</td>
<td>378</td>
<td>268</td>
</tr>
<tr>
<td>33,0</td>
<td>201</td>
<td>402</td>
<td>285</td>
</tr>
<tr>
<td>35,0</td>
<td>226</td>
<td>452</td>
<td>321</td>
</tr>
<tr>
<td>37,0</td>
<td>253</td>
<td>506</td>
<td>359</td>
</tr>
<tr>
<td>38,0</td>
<td>267</td>
<td>534</td>
<td>379</td>
</tr>
<tr>
<td>40,0</td>
<td>296</td>
<td>592</td>
<td>420</td>
</tr>
</tbody>
</table>
4 Mooring and towing equipment

4.1 Ropes

4.1.1 General

Steel wire ropes as well as fibre ropes from natural or synthetic fibres or ropes consisting of steel wires and fibre strands may be used for all ropes and cables.

During loading and unloading of tank vessels carrying inflammable liquids, steel wire ropes only are to be used for mooring purposes.

4.1.2 Mooring cables

It is recommended at least mooring cables as defined in Tab 7 and Tab 8.

<table>
<thead>
<tr>
<th>Chain diameter (mm)</th>
<th>Grade K₁</th>
<th></th>
<th>Grade K₂</th>
<th></th>
<th>Grade K₃</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Proof load</td>
<td>Breaking load</td>
<td>Proof load</td>
<td>Breaking load</td>
<td>Proof load</td>
</tr>
<tr>
<td>11</td>
<td>36</td>
<td>51</td>
<td>51</td>
<td>72</td>
<td>72</td>
</tr>
<tr>
<td>12,5</td>
<td>46</td>
<td>66</td>
<td>66</td>
<td>92</td>
<td>92</td>
</tr>
<tr>
<td>14</td>
<td>58</td>
<td>82</td>
<td>82</td>
<td>115</td>
<td>115</td>
</tr>
<tr>
<td>16</td>
<td>75</td>
<td>107</td>
<td>107</td>
<td>150</td>
<td>150</td>
</tr>
<tr>
<td>17,5</td>
<td>89</td>
<td>128</td>
<td>128</td>
<td>180</td>
<td>180</td>
</tr>
<tr>
<td>19</td>
<td>105</td>
<td>150</td>
<td>150</td>
<td>210</td>
<td>210</td>
</tr>
<tr>
<td>20,5</td>
<td>123</td>
<td>175</td>
<td>175</td>
<td>244</td>
<td>244</td>
</tr>
<tr>
<td>22</td>
<td>140</td>
<td>200</td>
<td>200</td>
<td>280</td>
<td>280</td>
</tr>
<tr>
<td>24</td>
<td>167</td>
<td>237</td>
<td>237</td>
<td>332</td>
<td>332</td>
</tr>
<tr>
<td>26</td>
<td>194</td>
<td>278</td>
<td>278</td>
<td>389</td>
<td>389</td>
</tr>
<tr>
<td>28</td>
<td>225</td>
<td>321</td>
<td>321</td>
<td>449</td>
<td>449</td>
</tr>
<tr>
<td>30</td>
<td>257</td>
<td>368</td>
<td>368</td>
<td>514</td>
<td>514</td>
</tr>
<tr>
<td>32</td>
<td>291</td>
<td>417</td>
<td>417</td>
<td>583</td>
<td>583</td>
</tr>
<tr>
<td>34</td>
<td>328</td>
<td>468</td>
<td>468</td>
<td>655</td>
<td>655</td>
</tr>
<tr>
<td>36</td>
<td>366</td>
<td>523</td>
<td>523</td>
<td>732</td>
<td>732</td>
</tr>
<tr>
<td>38</td>
<td>406</td>
<td>581</td>
<td>581</td>
<td>812</td>
<td>812</td>
</tr>
<tr>
<td>40</td>
<td>448</td>
<td>640</td>
<td>640</td>
<td>896</td>
<td>896</td>
</tr>
<tr>
<td>42</td>
<td>492</td>
<td>703</td>
<td>703</td>
<td>985</td>
<td>985</td>
</tr>
<tr>
<td>44</td>
<td>538</td>
<td>769</td>
<td>769</td>
<td>1080</td>
<td>1080</td>
</tr>
<tr>
<td>46</td>
<td>585</td>
<td>837</td>
<td>837</td>
<td>1170</td>
<td>1170</td>
</tr>
<tr>
<td>48</td>
<td>635</td>
<td>908</td>
<td>908</td>
<td>1270</td>
<td>1270</td>
</tr>
</tbody>
</table>

Note 1: Grades K₁, K₂ and K₃ are equivalent to grades Q₁, Q₂ and Q₃, respectively.

Table 6 : Minimum length of bow anchor chain cables

<table>
<thead>
<tr>
<th>Lₘₐ (m)</th>
<th>Minimum length of chain cables (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lₘₐ < 30</td>
<td>(\ell = 40)</td>
</tr>
<tr>
<td>30 ≤ Lₘₐ ≤ 50</td>
<td>(\ell = Lₘₐ + 10)</td>
</tr>
<tr>
<td>Lₘₐ > 50</td>
<td>(\ell = 60)</td>
</tr>
</tbody>
</table>

Table 7 : Mooring cables

<table>
<thead>
<tr>
<th>Mooring cable</th>
<th>Minimum length of cable (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st cable</td>
<td>(\ell' = \min (\ell'_1 ; \ell'_2))</td>
</tr>
<tr>
<td>\ell'_1 = Lₘₐ + 20</td>
<td>(\ell'_2 = Lₘₐ)</td>
</tr>
<tr>
<td>2nd cable</td>
<td>(\ell'' = 2/3 \ell')</td>
</tr>
<tr>
<td>3rd cable (2)</td>
<td>(\ell''' = 1/3 \ell')</td>
</tr>
</tbody>
</table>

(1) \(Lₘₐ \leq 100 \) m

(2) This cable is not required on board of vessels whose Lₘₐ is less than 20 m.

Table 8 : Minimum breaking load \(Rₛ \) of mooring cables

<table>
<thead>
<tr>
<th>(Lₘₐ \cdot B \cdot T)</th>
<th>(Rₛ), in kN</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\leq 1000) m³</td>
<td>(Rₛ = 60 + \frac{Lₘₐ B T}{10})</td>
</tr>
<tr>
<td>(> 1000) m³</td>
<td>(Rₛ = 150 + \frac{Lₘₐ B T}{100})</td>
</tr>
</tbody>
</table>

4.1.3 Towing cables

Self-propelled vessels and pushers that are also intended to tow shall be equipped with an at least 100 m long towing cable whose tensile strength is not less than the value determined according to Ch 7, Sec 6, [4].
4.1.4 Tugs are to be equipped with a number of cables that are suitable for their operation. However, the most important cable shall be at least 100 m long and have a tensile strength, in kN, not less than one third of the total power, in kW, of the power plant(s).

4.2 Bollards

4.2.1 Every vessel has to be equipped with one double bollard each on the fore and aft body on port and starboard side. In between, depending on the vessel’s size, one to three single bollards have to be arranged on either side of the vessel.

For larger vessels (as from $L = 70$ m) it is recommended to mount a triple bollard on the fore body and two double bollards on the aft body on port and starboard side.

4.2.2 The bollards have to be led through the deck and below be attached to a horizontal plate spaced at least one bollard diameter from the deck. Said plate being of the same thickness as the bollard wall has to be connected to the side wall and adjacent beam knees. Should this be impossible, the bollards have to be constrained in a bollard seat on deck.

5 Hawse pipes and chain lockers

5.1 Arrangements

5.1.1 Hawse pipes are to be of substantial construction. Their position and slope are to be arranged so as to facilitate housing and dropping of the anchors and avoid damage to the hull during these operations. The parts on which the chains bear are to be rounded to a suitable radius.

5.1.2 The foreship of the vessels shall be built in such a way that the anchors do not stick out of the side shell.

5.1.3 All mooring units and accessories, such as riding and trip stoppers are to be securely fastened to the Surveyor’s satisfaction.

5.1.4 Where two chains are used, the chain locker is to be divided into two compartments, each capable of housing the full length of one line.

5.2 Hawse pipe scantlings

5.2.1 The gross thickness of the hawse pipes is not to be less than:

- for $t_0 < 10$ mm:
 \[t = \min\left(t_0 + 2 ; 10\right) \]

- for $t_0 \geq 10$ mm:
 \[t = t_0 \]

where:

t_0 : Gross thickness of adjacent shell plating, in mm.
SECTION 5 CRANES AND BUNKER MASTS

1 General

1.1 Application

1.1.1 The lifting appliances are not covered by classification. Therefore, the rules of this section are to be considered as recommendations. However, they are to comply with national and/or international Regulations.

1.1.2 The fixed parts of lifting appliances, considered as an integral part of the hull, are the structures permanently connected by welding to the vessel’s hull (for instance crane pedestals, masts, derrick heel seatings, etc., excluding cranes, derrick booms, ropes, rigging accessories, and, generally, any dismountable parts). The shrouds of masts embedded in the vessel’s structure are considered as fixed parts.

1.1.3 The fixed parts of lifting appliances and their connections to the vessel’s structure are covered by the Rules, even when the certification of lifting appliances is not required.

1.2 Arrangement

1.2.1 It is to be possible to lower the crane boom or the derrick structure and to secure them to the vessel during the voyage.

2 Hull girder strength

2.1 General

2.1.1 The hull girder strength is to be checked when the lifting appliance is operated, taking into account the various loading conditions considered, through criteria to be agreed with the Society.

3 Hull scantlings

3.1 Loads transmitted by the lifting appliances

3.1.1 The forces and moments transmitted by the lifting appliances to the vessel’s structures, during both lifting service and navigation, are to be submitted to the Society.

3.2 Vessel’s structures

3.2.1 The vessel’s structures, subjected to the forces transmitted by the lifting appliances, are to be reinforced to the Society’s satisfaction.
SECTION 6 VESSEL COUPLING

1 General

1.1 Application

1.1.1 The requirements of this Section apply to coupling arrangements and scantling of vessels assigned ranges of navigation IN(0) and IN(0,6).

The coupling of vessels assigned range of navigation IN(0,6 < x ≤ 2) will be examined by the Society on a case by case basis.

1.1.2 Pushed barges and pushers/self-propelled vessels intended to push other vessels are to comply with [2].

Towed units and tugs/self-propelled vessels intended to tow other vessels are to comply with [3].

The requirements under [4] are given as recommendations.

2 Pushing arrangements

2.1 Hull strengthening

2.1.1 The bow of the pusher and the stern of the barge are to be reinforced in order to withstand the connection forces (see [2.4.4]).

The structural reinforcements are to be continued in aft and fore directions in order to transmit the connection forces to the hull structure of pusher and barge.

2.1.2 Pushers

Pushers are to be arranged with a pushing device, having a width not smaller than two thirds of its breadth.

2.2 Pushing transoms

2.2.1 Pushing transoms, at the stem of the pushing vessel and the stern of the barge, are to be arranged with boxes securely attached to the vessel structure by means of horizontal and vertical web plates.

Attention is to be paid that this box is not supported by elements thinner and/or a less rigid structure.

2.3 Other structures

2.3.1 Pusher fore part

The pusher fore structure is to be aligned with the barge aft structure in way of the notch or the dock bottom.

2.3.2 Barge aft part

The barge aft structure is to be aligned with the pusher fore structure in way of the notch or the dock bottom.

2.4 Coupling devices

2.4.1 Every coupling system shall guarantee the rigid coupling of all the craft in a convoy, i.e. under foreseen operating conditions the coupling device shall prevent longitudinal or transversal movement between the vessels, so that the assembly can be seen as a nautical unit.

2.4.2 The forces arising from foreseen operating conditions shall be properly absorbed and safely transmitted into the vessel’s structure by the coupling system and its components.

2.4.3 The coupling devices are to be fixed on deck, which is to be locally reinforced. The dimensioning of longitudinal coupling components is to be performed on the basis of coupling forces defined by the designer.

Where the value of coupling forces is not available, it is not to be taken less than those derived from [2.4.4].

2.4.4 Coupling forces

The coupling devices of convoys and formations of vessels shall be dimensioned so as to guarantee sufficient safety levels. This condition is deemed to be fulfilled if the coupling forces determined according to (1), (2) and (3) are assumed to be the tensile strength for the dimensioning of the longitudinal coupling components.

Coupling forces, in kN, between units forming a rigid pushed convoy may be obtained using the following formulae:

- Coupling points between pusher and pushed vessel:
 \[F_{SB} = \frac{0.27 P_B L_s}{B_s} \] (1)

- Coupling points between pushing motor vessel and pushed vessel:
 \[F_{SF} = \frac{0.08 P_B L_s}{h_k} \] (2)

- Coupling points between pushed vessels:
 \[F_{SL} = \frac{0.08 P_B L_s}{h_k} \] (3)

where (see also Fig 1):

- \(F_{SB}, F_{SF}, F_{SL} \): Coupling force, in kN, of the longitudinal connection
- \(P_B \): Installed propulsion power, in kW, of the pusher or pushing vessel
\(L_s \): Distance, in m, from the stern of the pusher or pushing vessel to the coupling point

\(L_s' \): Distance, in m, from the stern of the pushing vessel to the coupling point between the first pushed vessel and the vessel coupled ahead of it

\(h_k, h'_k \): Respective lever arm, in m, of the longitudinal connection

\(B_s \): Breadth, in m, of the pusher or pushing vessel.

A value of 1200 kN is deemed to be sufficient for the maximum coupling force for a pushing craft at the coupling point between the first pushed craft and the craft coupled ahead of it, even if formula (3) hereabove produces a higher value.

For the coupling points of all other longitudinal connections between pushed craft, the dimensioning of the coupling devices shall be based on the coupling force determined according to formula (3) hereabove.

Figure 1: Vessel coupling arrangement
2.4.5 For the longitudinal coupling of individual craft, at least two coupling points shall be used. Each coupling point shall be dimensioned for the coupling force determined according to [2.4.4]. If rigid coupling components are used, a single coupling point may be authorised if that point ensures secure connection of the craft.

2.4.6 Bollards

Sufficient numbers of bollards or equivalent devices shall be available and be capable of absorbing the coupling forces arising.

A safety coefficient not less than 4, considering the breaking load, is to be obtained when the bollards are subjected to the forces exerted by the cables.

Bollards supporting the cables of a convoy, are never to be applied simultaneously for mooring purposes.

The diameter of the bollards is to be not less than 15 times the diameter of the cable.

Bollards fitted on the pusher are to be at adequate distance of the bollards fitted on the pushed vessel, namely at a distance not less than 3 m.

3 Towing arrangements

3.1 General

3.1.1 Barges are to be fitted with suitable arrangements for towing, with scantlings under the responsibility of the designer.

The Society may, at the specific request of the interested parties, check the above arrangements and the associated hull strengthening; to this end, the maximum pull for which the arrangements are to be checked is to be specified on the plans.

4 Cables

4.1 General

4.1.1 The tensile strength of the cables shall be selected according to the foreseen number of windings. There shall be no more than three windings at the coupling point. Cables shall be selected according to their intended use.

4.1.2 The cables are to be joined at their end or equipped with a sleeve.
Chapter 8

CONSTRUCTION AND TESTING

SECTION 1 WELDING AND WELD CONNECTIONS
SECTION 2 PROTECTION OF HULL METALLIC STRUCTURES
SECTION 3 TESTING
SECTION 1 WELDING AND WELD CONNECTIONS

1 General

1.1 Application

1.1.1 The requirements of this Section apply for the preparation, execution and inspection of welded connections in new construction, conversion or repair in hull structures. If no separate requirements and remarks for welding in the individual areas as mentioned before are specified in these Rules, the requirements and conditions have to comply with the applicable requirements of the Society.

The general requirements relevant to fabrication by welding and qualification of welding procedures are given in the relevant chapters of NR216 Materials and Welding, Chapter 5.

1.1.2 Weld connections are to be executed according to the reviewed plans. A detail not specifically represented in the plans is, if any, to comply with the applicable requirements.

All materials shall be of proven weldability. They shall be chosen in accordance with the intended application and the conditions of service. Their properties shall be documented to the specified extent by test certificates.

1.1.3 It is understood that welding of the various types of steel is to be carried out by means of welding procedures approved for the purpose, even though an explicit indication to this effect may not appear on the reviewed/approved plans.

1.1.4 The quality standard adopted by the shipyard is to be submitted to the Society and applies to all constructions unless otherwise specified on a case by case basis.

1.2 Base material

1.2.1 The requirements of this Section apply for the welding of hull structural steels or aluminium alloys of the types considered in NR216 Materials and Welding or other types accepted as equivalent by the Society.

Materials to be used in the application area of this Section are to be tested in compliance with the applicable provisions. Quality and testing requirements for materials covered here are outlined in NR216 Materials and Welding.

1.2.2 The service temperature is intended to be the ambient temperature, unless otherwise stated.

1.3 Welding consumables and procedures

1.3.1 Approval of welding consumables and procedures

Welding consumables and welding procedures adopted are to be approved by the Society.

The requirements for the approval of welding consumables are given in NR216 Materials and Welding, Ch 5, Sec 2.

The requirements for the approval of welding procedures are given in NR216 Materials and Welding, Ch 5, Sec 1, NR216 Materials and Welding, Ch 5, Sec 4 and NR216 Materials and Welding, Ch 5, Sec 5.

1.3.2 Consumables

For welding of hull structural steels, the minimum consumable grades to be adopted are specified in Tab 1 depending on the steel grade.

Table 1: Consumable grades

<table>
<thead>
<tr>
<th>Steel grade</th>
<th>Quality grades of welding consumables and auxiliary materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1, 1Y, 2, 2Y, 3, 3Y</td>
</tr>
<tr>
<td>B, D</td>
<td>2, 2Y, 3, 3Y</td>
</tr>
<tr>
<td>AH32 - AH36</td>
<td>2Y, 2Y40, 3Y, 3Y40, 4Y, 4Y40</td>
</tr>
<tr>
<td>DH32 - DH36</td>
<td></td>
</tr>
<tr>
<td>A40, D40</td>
<td>2Y40, 3Y40, 4Y40</td>
</tr>
</tbody>
</table>

Note 1: Welding consumables approved for welding higher strength steels (Y) may be used in lieu of those approved for welding normal strength steels having the same or a lower grade; welding consumables approved in grade Y40 may be used in lieu of those approved in grade Y having the same or a lower grade.

Note 2: In the case of welded connections between two hull structural steels of different grades, as regards strength or notch toughness, welding consumables appropriate to one or the other steel are to be adopted.

Note 3: When joining normal to higher strength structural steel, consumables of the lowest acceptable grade for either material being joined may be used.

When joining steels of the same strength level but of different toughness grade, consumables of the lowest acceptable grade for either material being joined may be used.

Note 4: It is recommended for welding of plates with thickness over 50 mm and up to 70 mm to use one quality grade higher and for welding of plates with thickness over 70 mm to use two quality grades higher.
Consumables used for manual or semi-automatic welding (covered electrodes, flux-cored and flux-coated wires) of higher strength hull structural steels are to be at least of hydrogen-controlled grade H15 (H). Where the carbon equivalent Ceq is not more than 0.41% and the thickness is below 30 mm, any type of approved higher strength consumables may be used at the discretion of the Society.

Especially, welding consumables with hydrogen-controlled grade H15 and H10 shall be used for welding hull steel forgings and castings of respectively ordinary strength level and higher strength level.

Manual electrodes, wires and fluxes are to be stored in suitable locations so as to ensure their preservation in proper condition. Especially, where consumables with hydrogen-controlled grade are to be used, proper precautions are to be taken to ensure that manufacturer’s instructions are followed to obtain (drying) and maintain (storage, maximum time exposed, re-baking, ...) hydrogen-controlled grade.

The condition and remarks of welding consumables manufactures have to be observed.

1.4 Personnel and equipment

1.4.1 Welders

Welders for manual welding and for semi-automatic welding processes are to be certified by the Society unless otherwise agreed for welders already certified in accordance with a recognised standard accepted by the Society.

1.4.2 Automatic welding operators

Personnel manning automatic welding machines and equipment are to be competent and sufficiently trained.

1.4.3 Organisation

The internal organisation of the Building Yard, is to be such as to ensure compliance with the requirements in [1.4.1] and [1.4.2] and to provide for assistance and inspection of welding personnel, as necessary, by means of a suitable number of competent supervisors.

1.4.4 NDE operators

Non-destructive tests are to be carried out by qualified personnel, certified by the Society, or by recognised bodies in compliance with appropriate standards.

The qualifications are to be appropriate to the specific applications.

1.4.5 Technical equipment and facilities

The welding equipment is to be appropriate to the adopted welding procedures, of adequate output power and such as to provide for stability of the arc in the different welding positions.

In particular, the welding equipment for special welding procedures is to be provided with adequate and duly calibrated measuring instruments, enabling easy and accurate reading, and adequate devices for easy regulation and regular feed.

Manual electrodes, wires and fluxes are to be stored in suitable locations so as to ensure their preservation in proper condition. Especially, where consumables with hydrogen-controlled grade are to be used, proper precautions are to be taken to ensure that manufacturer’s instructions are followed to obtain (drying) and maintain (storage, maximum time exposed, re-backing, ...) hydrogen-controlled grade.

1.5 Documentation to be submitted

1.5.1 The structural plans to be submitted for review/approval according to Ch 1, Sec 3, are to contain the necessary data relevant to the fabrication by welding of the structures and items represented as far as class is concerned.

For important structures, the main sequences of prefabrication, assembly and welding and non-destructive examination planned are also to be represented in the plans.

1.5.2 A plan showing the location of the various steel types is to be submitted at least for outer shell, deck and bulkhead structures.

1.6 Design

1.6.1 General

For the various structural details typical of welded construction in shipbuilding and not dealt with in this Section, the rules of good practice, recognised standards and past experience are to apply as agreed by the Society.

1.6.2 Plate orientation

The plates of the shell and strength deck are generally to be arranged with their length in the fore-aft direction. Possible exceptions to the above will be considered by the Society on a case-by-case basis; tests as deemed necessary (for example, transverse impact tests) may be required by the Society.

1.6.3 Overall arrangement

Particular consideration is to be given to the overall arrangement and structural details of highly stressed parts of the hull.

Plans relevant to the special details are to be submitted.

1.6.4 Prefabrication sequences

Prefabrication sequences are to be arranged so as to facilitate positioning and assembling as far as possible.

The amount of welding to be performed on board is to be limited to a minimum and restricted to easily accessible connections.
1.6.5 Local clustering of welds, minimum spacing, socket weldments
The local clustering of welds and short distances between welds are to be avoided.
- Adjacent butt welds should be separated from each other by a distance of at least:
 \[50 \text{ mm} + 4 \times t \]
- Fillet welds should be separated from each other and from butt welds by a distance of at least:
 \[30 \text{ mm} + 2 \times t , \]
where \(t \) is the plate thickness, in mm.
The width of replaced or inserted plates (strips) should, however, be at least 300 mm or ten times the plate thickness, whichever is the greater.
Reinforcing plates, welding flanges, mountings and similar components socket welded into plating should be of the following minimum size:
\[D = 120 + 3 \times (t - 10), \]
without being less than 120 mm.
The corners of angular socket weldments are to be rounded to a radius of at least 50 mm unless the longitudinal butt welds are extended beyond the transverse butt weld as shown in Fig 1. The socket welding sequence shall then comprise firstly the welding of the transverse seams (1) following by cleaning of the ends of these and then the welding of the longitudinal seams (2).
The socket welding of components with radiused corners should proceed in accordance with the relevant welding sequence description.

2 Type of connections and preparation

2.1 General
2.1.1 The type of connection and the edge preparation are to be appropriate to the welding procedure adopted, the structural elements to be connected and the stresses to which they are subjected.

2.2 Butt welding
2.2.1 General
In general, butt connections of plating are to be full penetration, welded on both sides except where special procedures or specific techniques, considered equivalent by the Society, are adopted.
Connections different from the above may be accepted by the Society on a case by case basis; in such cases, the relevant detail and workmanship specifications are to be approved.

2.2.2 Welding of plates with different thicknesses
In the case of welding of plates with a difference in gross thickness \(z \) equal to or greater than (see Fig 2):
- \(3 \text{ mm} \) if \(t_1 \leq 10 \text{ mm} \)
- \(4 \text{ mm} \) if \(t_1 > 10 \text{ mm} \),
a taper having a length of not less than 4 times the difference in gross thickness is to be adopted for connections of plating perpendicular to the direction of main stresses. For connections of plating parallel to the direction of main stresses, the taper length may be reduced to 3 times the difference in gross thickness.
The transition between different component dimensions shall be smooth and gradual.
When the difference in thickness is less than the above values, it may be accommodated in the weld transition between plates.

2.2.3 Butt welding edge preparation, root gap
Typical butt weld plate edge preparation for manual welding is specified in Tab 2 and Tab 3.
The acceptable root gap is to be in accordance with the adopted welding procedure and relevant bevel preparation.

2.2.4 Butt welding on permanent backing
Butt welding on permanent backing, i.e. butt welding assembly of two plates backed by the flange or the face plate of a stiffener, may be accepted where back welding is not feasible or in specific cases deemed acceptable by the Society.
The type of bevel and the gap between the members to be assembled are to be such as to ensure a full penetration of the weld on its backing and an adequate connection to the stiffener as required.
See Fig 3.
Table 2: Typical butt weld plate edge preparation (manual welding) - See Note 1

<table>
<thead>
<tr>
<th>Detail</th>
<th>Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Square butt</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| $t \leq 5 \text{ mm}$
| $G = 3 \text{ mm}$ |
| Single bevel butt |
| ![Single bevel butt diagram](image) |
| $t > 5 \text{ mm}$
| $G \leq 3 \text{ mm}$
| $R \leq 3 \text{ mm}$
| $50^\circ \leq \theta \leq 70^\circ$ |
| Double bevel butt |
| ![Double bevel butt diagram](image) |
| $t > 19 \text{ mm}$
| $G \leq 3 \text{ mm}$
| $R \leq 3 \text{ mm}$
| $50^\circ \leq \theta \leq 70^\circ$ |
| Double vee butt, uniform bevels |
| ![Double vee butt, uniform bevels diagram](image) |
| $G \leq 3 \text{ mm}$
| $R \leq 3 \text{ mm}$
| $50^\circ \leq \theta \leq 70^\circ$ |
| Double vee butt, non-uniform bevels |
| ![Double vee butt, non-uniform bevels diagram](image) |
| $G \leq 3 \text{ mm}$
| $R \leq 3 \text{ mm}$
| $6 \leq h \leq \frac{t}{3} \text{ mm}$
| $\theta = 50^\circ$
| $\alpha = 90^\circ$ |

Note 1: Different plate edge preparation may be accepted or approved by the Society on the basis of an appropriate welding procedure specification.

Table 3: Typical butt weld plate edge preparation (manual welding) - See Note 1

<table>
<thead>
<tr>
<th>Detail</th>
<th>Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single vee butt, one side welding with backing strip (temporary or permanent)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| $3 \leq G \leq 9 \text{ mm}$
| $30^\circ \leq \theta \leq 45^\circ$ |
| Single vee butt |
| ![Single vee butt diagram](image) |
| $G \leq 3 \text{ mm}$
| $50^\circ \leq \theta \leq 70^\circ$
| $R \leq 3 \text{ mm}$ |

Note 1: Different plate edge preparation may be accepted or approved by the Society on the basis of an appropriate welding procedure specification.

The work is to be done in accordance with an approved procedure; in particular, this requirement applies to work done on board or in conditions of difficult access to the welded connection. Special measures may be required by the Society.

Welding of bulbs without a doubler is to be performed by welders specifically certified by the Society for such type of welding.

2.3 Fillet welding

2.3.1 General

Ordinary fillet welding may be adopted for T connections of the various simple and composite structural elements, where they are subjected to low tensile stress or where they are not critical for fatigue.

Where this is not the case, partial or full T penetration welding according to [2.4] is to be adopted.

2.3.2 Fillet welding types

Fillet welding may be of the following types:

- continuous fillet welding, where the weld is constituted by a continuous fillet on each side of the abutting plate (see [2.3.3])
- intermittent fillet welding, which may be subdivided (see [2.3.4]) into:
 - chain welding
 - scallop welding
 - staggered welding.

2.2.5 Section, bulbs and flat bars

When lengths of longitudinals of the shell plating and strength deck within 0.6 L amidships, or elements in general subject to high stresses, are to be connected together by butt joints, these are to be full penetration. Other solutions may be adopted if deemed acceptable by the Society on a case by case basis.
Table 4: Welding factors w_f and coefficient φ for the various hull structural connections

<table>
<thead>
<tr>
<th>Hull area</th>
<th>Connection</th>
<th>w_f (1)</th>
<th>φ (2) (3)</th>
<th>CH</th>
<th>SC</th>
<th>ST</th>
</tr>
</thead>
<tbody>
<tr>
<td>General, unless otherwise specified in the table</td>
<td>watertight plates boundaries</td>
<td>0,35</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>web of ordinary stiffeners</td>
<td>plating at ends (4)</td>
<td>0,13</td>
<td>3,5</td>
<td>3,0</td>
<td>4,6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>elsewhere</td>
<td>0,13</td>
<td>3,5</td>
<td>3,0</td>
<td>4,6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>face plate of fabricated stiffeners at ends (4)</td>
<td>0,13</td>
<td>3,5</td>
<td>3,0</td>
<td>4,6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>elsewhere</td>
<td>0,13</td>
<td>3,5</td>
<td>3,0</td>
<td>4,6</td>
<td></td>
</tr>
<tr>
<td>Bottom and double bottom</td>
<td>longitudinal ordinary stiffeners</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>bottom and inner bottom plating (5)</td>
<td>0,13</td>
<td>3,5</td>
<td>3,0</td>
<td>4,6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>keel</td>
<td>0,25</td>
<td>1,8</td>
<td>1,8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>inner bottom plating</td>
<td>0,20</td>
<td>2,2</td>
<td>2,2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>side girders</td>
<td>bottom and inner bottom plating</td>
<td>0,13</td>
<td>3,5</td>
<td>3,0</td>
<td>4,6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>floors (interrupted girders)</td>
<td>0,20</td>
<td>2,2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>floors</td>
<td>bottom and inner bottom plating</td>
<td>0,13</td>
<td>3,5</td>
<td>3,0</td>
<td>4,6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>in general</td>
<td>0,13</td>
<td>3,5</td>
<td>3,0</td>
<td>4,6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>at ends (20% of span) for longitudinally framed double bottom</td>
<td>0,25</td>
<td>1,8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>inner bottom plating in way of brackets of primary supporting members</td>
<td>0,25</td>
<td>1,8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>girders (interrupted floors)</td>
<td>0,20</td>
<td>2,2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>side girders in way of hopper tanks</td>
<td>0,35</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>partial side girders floors</td>
<td>0,25</td>
<td>1,8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>web stiffeners floor and girder webs</td>
<td>0,13</td>
<td>3,5</td>
<td>3,0</td>
<td>4,6</td>
<td></td>
</tr>
<tr>
<td>Side and inner side</td>
<td>ordinary stiffeners side and inner side plating</td>
<td>0,13</td>
<td>3,5</td>
<td>3,0</td>
<td>4,6</td>
<td></td>
</tr>
<tr>
<td>girders and web frames in double hull vessels</td>
<td>side and inner side plating</td>
<td>0,35</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deck</td>
<td>strength deck side plating</td>
<td>$w_f = 0,45$ if $t \leq 15$ mm Partial penetration welding if $t > 15$ mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>non-watertight decks side plating</td>
<td>0,20</td>
<td>2,2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ordinary stiffeners and intercostal girders deck plating</td>
<td>0,13</td>
<td>3,5</td>
<td>3,0</td>
<td>4,6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>hatch coamings deck plating</td>
<td>0,35</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>at corners of hatchways for 15% of the hatch length</td>
<td>0,45</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>web stiffeners coaming webs</td>
<td>0,13</td>
<td>3,5</td>
<td>3,0</td>
<td>4,6</td>
<td></td>
</tr>
<tr>
<td>Bulkheads</td>
<td>tank bulkhead structures tank bottom plating and ordinary stiffeners (plane bulkheads)</td>
<td>0,45</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>vertical corrugations (corrugated bulkheads) Full penetration welding, in general</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>boundaries other than tank bottom</td>
<td>0,35</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>watertight bulkhead structures</td>
<td>0,35</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>non-watertight bulkhead structures</td>
<td>boundaries wash bulkheads</td>
<td>0,20</td>
<td>2,2</td>
<td>2,2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>others</td>
<td>0,13</td>
<td>3,5</td>
<td>3,0</td>
<td>4,6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ordinary stiffeners bulkhead plating in general (5)</td>
<td>0,13</td>
<td>3,5</td>
<td>3,0</td>
<td>4,6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>at ends (25% of span), where no end brackets are fitted</td>
<td>0,35</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fore peak (6)</td>
<td>bottom longitudinal ordinary stiffeners bottom plating</td>
<td>0,20</td>
<td>2,2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>floors and girders bottom and inner bottom plating</td>
<td>0,25</td>
<td>1,8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>side frames in panting area side plating</td>
<td>0,20</td>
<td>2,2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>webs of side girders in single side skin structures side plating and face plate</td>
<td>A < 65 cm2 (7)</td>
<td>0,25</td>
<td>1,8</td>
<td>1,8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A ≥ 65 cm2 (7) See Tab 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hull area</td>
<td>Connection</td>
<td>of</td>
<td>to</td>
<td>(w_f) (1)</td>
<td>(\varphi) (2) (3)</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>------------</td>
<td>----</td>
<td>----</td>
<td>--------------</td>
<td>---------------</td>
<td></td>
</tr>
<tr>
<td>After peak (6)</td>
<td>internal structures</td>
<td>each other</td>
<td>0,20</td>
<td>CH</td>
<td>SC</td>
<td>ST</td>
</tr>
<tr>
<td></td>
<td>side ordinary stiffeners</td>
<td>side plating</td>
<td>0,20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>floors</td>
<td>bottom and inner bottom plating</td>
<td>0,20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Machinery space (6)</td>
<td>centre girder</td>
<td>keel and inner bottom plating</td>
<td>in way of main engine foundations</td>
<td>0,45</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>in way of seating of auxiliary machinery and boilers</td>
<td>0,35</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>elsewhere</td>
<td>0,25</td>
<td>1.8</td>
<td>1.8</td>
</tr>
<tr>
<td></td>
<td>side girders</td>
<td>bottom and inner bottom plating</td>
<td>in way of main engine foundations</td>
<td>0,45</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>in way of seating of auxiliary machinery and boilers</td>
<td>0,35</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>elsewhere</td>
<td>0,20</td>
<td>2.2</td>
<td>2.2</td>
</tr>
<tr>
<td></td>
<td>floors (except in way of main engine foundations)</td>
<td>bottom and inner bottom plating</td>
<td>in way of seating of auxiliary machinery and boilers</td>
<td>0,35</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>elsewhere</td>
<td>0,20</td>
<td>2.2</td>
<td>2.2</td>
</tr>
<tr>
<td></td>
<td>floors in way of main engine foundations</td>
<td>bottom plating</td>
<td>0,35</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>foundation plates</td>
<td>0,45</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>floors</td>
<td>centre girder</td>
<td>single bottom</td>
<td>0,45</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>double bottom</td>
<td>0,25</td>
<td>1.8</td>
<td>1.8</td>
</tr>
<tr>
<td>Super-structures and deckhouses</td>
<td>external bulkheads</td>
<td>deck</td>
<td>in general</td>
<td>0,35</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>engine and boiler casings at corners of openings (15% of opening length)</td>
<td>0,45</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>internal bulkheads</td>
<td>deck</td>
<td>0,13</td>
<td>3.5</td>
<td>3.0</td>
<td>4.6</td>
</tr>
<tr>
<td></td>
<td>ordinary stiffeners</td>
<td>external and internal bulkhead plating</td>
<td>0,13</td>
<td>3.5</td>
<td>3.0</td>
<td>4.6</td>
</tr>
<tr>
<td>Hatch covers</td>
<td>ordinary stiffener</td>
<td>plating</td>
<td>0,13</td>
<td>3.5</td>
<td>3.0</td>
<td>4.6</td>
</tr>
<tr>
<td>Pillars</td>
<td>elements composing the pillar section</td>
<td>each other (fabricated pillars)</td>
<td>0,13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>pillars</td>
<td>deck</td>
<td>pillars in compression</td>
<td>0,35</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>pillars in tension</td>
<td>See [3.7]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ventilators</td>
<td>coamings</td>
<td>deck</td>
<td>0,35</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rudders</td>
<td>horizontal and vertical webs directly connected to solid parts</td>
<td>solid parts or rudder stock</td>
<td>According to Ch 7, Sec 1, [6.3] or Ch 7, Sec 1, [6.4]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>elsewhere</td>
<td>for shear force greater than or equal to 45% of the maximum rudder body value</td>
<td>0,45</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>for shear force lower than 45% of the maximum rudder body value</td>
<td>0,20</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>other webs</td>
<td>each other</td>
<td>0,20</td>
<td>2.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>plating</td>
<td>in general</td>
<td>0,20</td>
<td>2.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>top and bottom plates of rudder plating</td>
<td>0,35</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1) In connections for which \(w_f \geq 0.35\), continuous fillet welding is to be adopted.

(2) For coefficient \(\varphi\), see [2.3.4]. In connections for which no \(\varphi\) value is specified for a certain type of intermittent welding, such type is not permitted and continuous welding is to be adopted.

(3) CH = chain welding, SC = scallop welding, ST = staggered welding.

(4) The web at the end of intermittently welded girders or stiffeners is to be continuously welded to the plating or the flange plate, as applicable, over a distance \(d\) at least equal to the depth \(h\) of the girder or stiffeners, with 100 mm \(\geq d \geq 75\ mm\). Where end brackets are fitted, ends means the area extended in way of brackets and at least 50 mm beyond the bracket toes.

(5) In tanks intended for the carriage of ballast or fresh water, continuous welding with \(w_f = 0.35\) is to be adopted.

(6) For connections not mentioned, the requirements for the central part apply.

(7) A is the face plate sectional area of the side girders, in \(cm^2\).
2.3.3 Continuous fillet welding

Continuous fillet welding is to be adopted:
- for watertight connections
- for connections of brackets, lugs and scallops
- at the ends of connections for a length of at least 75 mm
- for connections of stiffeners subject to wheeled loads
- where intermittent welding is not allowed, according to [2.3.4].

Continuous fillet welding may also be adopted in lieu of intermittent welding wherever deemed suitable, and it is recommended where the spacing \(p \), calculated according to [2.3.4], is low.

2.3.4 Intermittent welding

In water, fuel and cargo tanks, in the bottom area of fuel oil tanks and of spaces where condensed or sprayed water may accumulate and in hollow components (e.g. rudders) threatened by corrosion, only continuous or intermittent scallop welding shall be used.

Where the plating is liable to be subjected to locally concentrated loads (e.g. due to grounding or impacts when berthing) intermittent welding with scallops should not be used.

The spacing \(p \) and the length \(d \), in mm, of an intermittent weld, shown in:
- Fig 4 for chain welding
- Fig 5 for scallop welding
- Fig 6 for staggered welding, are to be such that:
\[
p / d \leq \varphi
\]
where the coefficient \(\varphi \) is defined in Tab 4 and Tab 5 for the different types of intermittent welding, depending on the type and location of the connection.

In general, staggered welding is not allowed for connections subjected to high alternate stresses.

One side continuous welding may be accepted instead of chain and staggered intermittent welding for connections of stiffeners in the dry spaces of deckhouses and superstructures, where not affected by external pressure, tank pressure or concentrated loads.

In addition, the following limitations are to be complied with:
- chain welding (see Fig 4):
 \[
d \geq 75 \text{ mm} \\
p - d \leq 200 \text{ mm}
\]
• scallop welding (see Fig 5):
 \[d \geq 75 \text{ mm} \]
 \[p - d \leq 25 t \text{ and } p - d \leq 150 \text{ mm}, \]
 where \(t \) is the lesser thickness of parts to be welded
 \[v \leq 0.25 b, \text{ without being greater than } 75 \text{ mm} \]

Figure 5 : Intermittent scallop welding

• staggered welding (see Fig 6):
 \[d \geq 75 \text{ mm} \]
 \[p - 2d \leq 300 \text{ mm} \]
 \[p \leq 2d \text{ for connections subjected to high alternate stresses.} \]

Figure 6 : Intermittent staggered welding

2.3.5 Throat thickness of fillet weld T connections

Fillet welds shall normally be made on both sides, and exceptions to this rule (as in the case of closed box girders and predominant shear stresses parallel to the weld) are subject to approval in each individual case.

The minimum throat thickness of fillet weld T connections is to be obtained, in mm, from the following formula:

\[t_T = \frac{w_F t p}{d} \]

where:

- \(w_F \) : Welding factor, defined in Tab 4 for the various hull structural connections; for connections of primary supporting members belonging to single skin structures and not mentioned in Tab 4, \(w_F \) is defined in Tab 5
- \(t \) : Actual gross thickness, in mm, of the structural element which constitutes the web of the T connection
- \(p, d \) : Spacing and length, in mm, of an intermittent weld, defined in [2.3.4].

For continuous fillet welds, \(p / d \) is to be taken equal to 1.

Unless otherwise agreed (e.g. for the fully mechanised welding of smaller plate thicknesses in appropriate clamping jigs), the minimum fillet weld throat thickness shall be the greater of:

- \[t_{T_{\text{min}}} = \frac{t_1 + t_2}{2} \]

and:

- \[3.0 \text{ mm for } t_1 \leq 6 \text{ mm} \]
- \[3.5 \text{ mm for } t_1 > 6 \text{ mm}, \]

where:

- \(t_1, t_2 \) : Thicknesses of connected plates with \(t_1 < t_2 \).

In the case of automatic or semi-automatic deep penetration weld, the throat thickness may be reduced according to [2.3.8]. Prior to start fabrication welding with deep penetration a production test has to be conducted to ensure the relevant weld quality. The kind of tests and the test scope has to be agreed with the Society.

The throat thickness may be required by the Society to be increased, depending on the results of structural analyses.

The leg length of fillet weld T connections is to be not less than 1.4 times the required throat thickness.

2.3.6 Throat thickness of welds between cut-outs

The throat thickness of the welds between the cut-outs in primary supporting member webs for the passage of ordinary stiffeners is to be not less than the value obtained, in mm, from the following formula:

\[t_{TC} = \frac{t_T}{\lambda} \]

where:

- \(t_T \) : Throat thickness defined in [2.3.5]
- \(\epsilon, \lambda \) : Dimensions, in mm, to be taken as shown in:
 - Fig 7 for continuous welding
 - Fig 8 for intermittent scallop welding.
2.3.7 Throat thickness of welds connecting ordinary stiffeners with primary supporting members

The throat thickness of fillet welds connecting ordinary stiffeners and collar plates, if any, to the web of primary supporting members is to be not less than 0.35 t_W, where t_W is the web gross thickness, in mm.

2.3.8 Throat thickness of deep penetration fillet welding

When fillet welding is carried out with automatic welding processes, the throat thickness required in [2.3.5] may be reduced up to 15%, depending on the penetration of the weld process. The evidence of the weld penetration is subject to a welding procedure test which has to be approved by the Society. However, this reduction may not be greater than 1.5 mm.

The same reduction applies also for semi-automatic procedures where the welding is carried out in the downhand position.

The conditions of welding in down hand position (PG) have to comply with the applicable requirements of NR216 Material and Welding.

2.4 Partial and full T penetration welding

2.4.1 General

Partial or full T penetration welding is to be adopted for connections subjected to high stresses for which fillet welding is considered unacceptable by the Society.

Typical edge preparations are indicated in:

- for partial penetration welds: Fig 9 and Fig 10, in which f, in mm, is to be taken between 3 mm and $t/3$, and α between 45° and 60°
- for full penetration welds: Fig 11 and Fig 12, in which f, in mm, is to be taken between 0 and 3 mm, and α between 45° and 60°.

Back gouging is generally required for full penetration welds.

2.4.2 Lamellar tearing

Precautions are to be taken in order to avoid lamellar tears, which may be associated with:

- cold cracking when performing T connections between plates of considerable thickness or high restraint
- large fillet welding and full penetration welding on higher strength steels.

Additional provisions may be required by the Society on a case by case basis.
Pt B, Ch 8, Sec 1

2.5 Lap-joint welding

2.5.1 General

Lap-joint welding may be adopted for:

- peripheral connection of doublers
- internal structural elements subjected to very low stresses.

Elsewhere, lap-joint welding may be allowed by the Society on a case by case basis, if deemed necessary under specific conditions.

Continuous welding is generally to be adopted.

2.5.2 Gap

The surfaces of lap-joints are to be in sufficiently close contact.

2.5.3 Dimensions

The dimensions of the lap-joint are to be specified and are considered on a case by case basis. Typical details are given in Tab 6.

2.6 Slot welding

2.6.1 General

Slot welding may be adopted in very specific cases subject to the special agreement of the Society, e.g. for doublers according to Ch 2, Sec 4, [2.1].

In general, slot welding of doublers on the outer shell and strength deck is not permitted within 0.6L amidships. Beyond this zone, slot welding may be accepted by the Society on a case by case basis.

Slot welding is, in general, permitted only where stresses act in a predominant direction. Slot welds are, as far as possible, to be aligned in this direction.

Table 6: Typical lap joint, plug and slot welding (manual welding)

<table>
<thead>
<tr>
<th>Detail</th>
<th>Standard</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fillet weld in lap joint</td>
<td></td>
<td>b = 2 t₁ + 25 mm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>location of lap joint to be approved by the Society</td>
</tr>
<tr>
<td>Fillet weld in jogged lap joint</td>
<td></td>
<td>b ≥ 2 t₁ + 25 mm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| **Plug welding** | ![Image](image3.png) | t ≤ 12 mm
\(\ell = 60 \text{ mm} \)
R = 6 mm
40° ≤ θ ≤ 50°
G = 12 mm
L > 2 \(\ell \)
12 mm < t ≤ 25 mm
\(\ell = 80 \text{ mm} \)
R = 0.5 t (mm)
θ = 30°
G = t (mm)
L > 2 \(\ell \) |
| **Slot welding** | ![Image](image4.png) | t ≤ 12 mm
G = 20 mm
\(\ell = 80 \text{ mm} \)
2 \(\ell \) ≤ L ≤ 3 \(\ell \), max 250 mm
t > 12 mm
G = 2 t
\(\ell = 100 \text{ mm} \)
2 \(\ell \) ≤ L ≤ 3 \(\ell \), max 250 mm |
2.6.2 Dimensions
Slot welds are to be of appropriate shape (in general oval) and dimensions, depending on the plate thickness, and may not be completely filled by the weld.

Typical dimensions of the slot weld and the throat thickness of the fillet weld are given in Tab 6.

The distance between two consecutive slot welds is to be not greater than a value which is defined on a case by case basis taking into account:
- the transverse spacing between adjacent slot weld lines
- the stresses acting in the connected plates
- the structural arrangement below the connected plates.

2.7 Plug welding

2.7.1 Plug welding may be adopted only when accepted by the Society on a case by case basis, according to specifically defined criteria. Typical details are given in Tab 6.

3 Specific weld connections

3.1 Corner joint welding

3.1.1 Corner joint welding, as adopted in some cases at the corners of tanks, performed with ordinary fillet welds, is permitted provided the welds are continuous and of the required size for the whole length on both sides of the joint.

3.1.2 Alternative solutions to corner joint welding may be considered by the Society on a case by case basis.

3.2 Bilge keel connection

3.2.1 The intermediate flat, through which the bilge keel is connected to the shell according to Pt D, Ch 2, Sec 13, [2.1], is to be welded as a shell doubler by continuous fillet welds.

The butt welds of the doubler and bilge keel are to be full penetration and shifted from the shell butts.

The butt welds of the bilge plating and those of the doublers are to be flush in way of crossing, respectively, with the doubler and with the bilge keel.

Butt welds of the intermediate flat are to be made to avoid direct connection with the shell plating, in order that they do not alter the shell plating, by using, for example, a copper or a ceramic backing.

3.3 Struts connecting ordinary stiffeners

3.3.1 In case of a strut connected by lap joint to the ordinary stiffener, the throat thickness of the weld is to be obtained, in mm, from the following formula:

$$t_r = \frac{n \cdot F}{n_w \cdot n^3} \times 10^3$$

where:
- F : Maximum force transmitted by the strut, in kN
- η : Safety factor, to be taken equal to 2
- n_w : Number of welds in way of the strut axis

$$\ell_w : \text{Length of the weld in way of the strut axis, in mm}$$

$$\tau : \text{Permissible shear stress, to be taken equal to 100 N/mm}^2.$$

3.4 Connection between propeller post and propeller shaft bossing

3.4.1 Fabricated propeller posts are to be welded with full penetration welding to the propeller shaft bossing.

3.5 Bar stem connections

3.5.1 The bar stem is to be welded to the bar keel generally with butt welding. The shell plating is also to be welded directly to the bar stem with butt welding.

3.6 Deck subjected to wheeled loads

3.6.1 Double continuous fillet welding is to be adopted for the connections of ordinary stiffeners with deck plating.

3.7 Pillars connection

3.7.1 For pillars in tension, continuous fillet welding may be accepted provided that the tensile stress in welds does not exceed 50/k N/mm², where k is the greatest material factor of the welded elements and the filler metal.

For pillars subjected to higher tensile stress, full penetration welding is to be adopted.

3.8 Welds at the ends of structural members

3.8.1 As shown in Fig 13, the web at the end of intermittently welded girders or stiffeners is to be continuously welded to the plating or the flange plate, as applicable, over a distance at least equal to the depth h of the girder or stiffener, subject to a maximum of 300 mm and minimum of 75 mm.

3.8.2 The areas of bracket plates should be continuously welded over a distance at least equal to the length of the bracket plate. Scallop are to be located only beyond a line imagined as an extension of the free edge of the bracket plate.

3.8.3 Wherever possible, the free ends of stiffeners shall abut against the transverse plating or the webs of sections and girders so as to avoid stress concentrations in the plating. Failing this, the ends of the stiffeners shall be cut off obliquely and shall be continuously welded over a distance of at least 1.7h, subject to a maximum of 300 mm.

Figure 13 : Welds at the ends of girders and stiffeners
3.8.4 Where butt joints occur in flange plates, the flange shall be continuously welded to the web on both sides of the joint over a distance at least equal to the width of the flange.

3.9 Joints between section ends and plates

3.9.1 Welded joints uniting section ends and plates (e.g. at lower ends of frames) may be made in the same plane or lapped. Where no design calculations have been carried out or stipulated for the welded connections, the joints may be made analogously to those shown in Fig 14.

If the thickness t₁ of the section web is greater than the thickness t of the plate to be connected, the length of the joint d must be increased in the ratio t₁ / t.

Figure 14: Joints between section ends and plates

3.9.2 Where the joint lies in the plane of the plate, it may conveniently take the form of a single-bevel butt weld with fillet. Where the joint between the plate and the section end overlaps, the fillet weld must be continuous on both sides and must meet at the ends. The necessary dimension is to be calculated in accordance with [4.7] but need not exceed 0.6 t. The fillet weld throat thickness shall not be less than the minimum specified in [2.3.5].

3.10 Welded shaft bracket joints

3.10.1 Unless cast in one piece and provided with integrally cast welding flanges (see Fig 15), strut barrel and struts are to be connected to each other and to the shell plating in the manner shown in Fig 16.

3.10.2 In the case of single-strut shaft brackets no welding may be performed on the arm at or close to the position of constraint. Such components must be provided with integrally forged or cast welding flanges in the manner shown in Fig 15.

3.11 Rudder coupling flanges

3.11.1 Unless forged or cast steel flanges with integrally forged or cast welding flanges are used, horizontal rudder coupling flanges are to be joined to the rudder body by plates of graduated thickness and full penetration single or double-bevel welds as prescribed in [2.4] (see Fig 17).

Figure 15: Shaft bracket with integrally cast welding flanges

Figure 16: Shaft bracket without integrally cast welding flanges

Figure 17: Horizontal rudder coupling flanges

t : Shell plating thickness

 tf : Actual flange thickness, in mm

 t' = d/3 + 5 mm, where d < 50 mm

 t' = 3 d³/5 mm, where d ≥ 50 mm.
3.11.2 Allowance shall be made for the reduced strength of the coupling flange in the thickness direction (see Note 1). It is recommended that a material with guaranteed properties in the thickness direction (Z grade) should be used for this purpose. In case of doubt, proof by calculation of the adequacy of the welded connection shall be produced.

Note 1: Special characteristics peculiar to the material such as the (lower) strength values of rolled material in the thickness direction or the softening of cold hardened aluminium as a result of welding are factors which have to be taken into account when designing and dimensioning welded joints.

3.12 Welded joints between rudder stock and rudder body

3.12.1 Where rudder stocks are welded into the rudder body, a thickened collar of the type shown in Fig 18 must be provided at the upper mounting (top edge of rudder body). The welded joint between the collar and the top rib is to take the form of a full penetration single or double-bevel weld in accordance with [2.4].

The transitions from the weld to the collar are to be free from notches. The collar radii shall be kept free from welds in every case.

Figure 18 : Rudder stock welded to rudder body

3.13 Deck subjected to wheeled loads

3.13.1 Double continuous fillet welding is to be adopted for the connections of ordinary stiffeners with deck plating.

4 Direct calculation of fillet welds

4.1 General

4.1.1 As an alternative to the determination of the necessary fillet weld throat thicknesses in accordance with [2.3], a mathematical calculation may be performed, e.g. in order to optimize the weld thicknesses in relation to the loads. This Article describes general stress analysis for mainly static loads. For welded joints subjected to loads dynamic in character, e.g. those at the shell connection of single-strut shaft brackets, proof of fatigue strength in compliance with the Society’s Rules is to be submitted where necessary.

4.1.2 Definition

For the purposes of calculation, the following stresses in a fillet weld are defined (see also Fig 19):

\[\sigma_L : \text{Normal stress perpendicular to direction of seam} \]
\[\tau_L : \text{Shear stress perpendicular to direction of seam} \]
\[\tau_{II} : \text{Shear stress parallel to direction of seam}. \]

Normal stresses parallel to the seam are disregarded in the calculation.

The calculated weld seam area is \((a \cdot \ell) \).

For reasons of equilibrium, for the flank of the weld lying vertically to the shaded calculated weld seam area:

\[\tau_L = \sigma_L \]

For a composite stress the equivalent stress is to be calculated by the following formula:

\[\sigma_v = \sqrt{\sigma_L^2 + \tau_L^2 + \tau_{II}^2} \]

Fillet welds are to be so dimensioned that the stresses determined by the formulae do not exceed the permissible stresses stated in Tab 7.

Figure 19 : Definition

\[D_1 = 1.1 \, D \text{ without being less than } D + 20 \text{ mm} \]
\[D_{1\,\text{min}} = D + 10 \text{ mm} \text{ (applies only to alternative solution), where } D \text{ is the rudder stock diameter, in mm.} \]
Table 7: Permissible stresses in fillet welded joint

<table>
<thead>
<tr>
<th>Material</th>
<th>$R_{u0.2}$ or $R_{pu,2}$ (N/mm²)</th>
<th>Equivalent stress, shear stress $\sigma_{V,\text{zul}}, \tau_{\text{zul}}$ (N/mm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal hull structural steel A, B, D</td>
<td>235</td>
<td>115</td>
</tr>
<tr>
<td>Higher tensile hull structural steel AH 32 / DH 32</td>
<td>315</td>
<td>145</td>
</tr>
<tr>
<td>AH 36 / DH 36</td>
<td>355</td>
<td>160</td>
</tr>
<tr>
<td>High tensile steel St E 460</td>
<td>460</td>
<td>200</td>
</tr>
<tr>
<td>St E 690</td>
<td>685</td>
<td>290</td>
</tr>
<tr>
<td>Austenitic stainless steels</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.4306/304L</td>
<td>180</td>
<td></td>
</tr>
<tr>
<td>1.4404/316L</td>
<td>190</td>
<td></td>
</tr>
<tr>
<td>1.4415/316L</td>
<td>190</td>
<td></td>
</tr>
<tr>
<td>1.4438/317L</td>
<td>195</td>
<td></td>
</tr>
<tr>
<td>1.4541/321</td>
<td>205</td>
<td></td>
</tr>
<tr>
<td>1.4571/316 Ti</td>
<td>215</td>
<td></td>
</tr>
<tr>
<td>Aluminium alloys</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Al Mg 3</td>
<td>80 (3)</td>
<td>35 (5)</td>
</tr>
<tr>
<td>Al Mg 4,5</td>
<td>125 (3)</td>
<td>56 (6)</td>
</tr>
<tr>
<td>Al Mg Si 0,5</td>
<td>65 (4)</td>
<td>30 (7)</td>
</tr>
<tr>
<td>Al Mg Si 1</td>
<td>11 (4)</td>
<td>45 (8)</td>
</tr>
</tbody>
</table>

(1) Also applies to structural steel S 235 JR according to EN 10025-2, rimming steel not permitted
(2) Also applies to structural steel S 355 J2 according to EN 10025-2
(3) Plates, soft condition
(4) Profiles, cold hardened
(5) Welding consumables: S-Al Mg 3, S-Al Mg 5 or S-Al Mg 4,5 Mn
(6) Welding consumables: S-Al Mg 4,5 Mn
(7) Welding consumables: S-Al Mg 3, S-Al Mg 5, S-Al Mg 4,5 Mn or SAl Si 5
(8) Welding consumables: S-Al Mg 5 or S-Al Mg 5, S-Al Mg 4,5 Mn.

4.2 Fillet welds stressed by normal and shear forces

4.2.1 Flank and frontal welds are regarded as being equal for the purposes of stress analysis. In view of this, normal and shear stresses, in N/mm², are calculated as follows:

$$\sigma = \tau = \frac{P}{\sum a \ell}$$

where:

- a, ℓ : Thickness and length, in mm, of the fillet weld
- P : Force acting on the weld joint, in N.

- For a joint as shown in Fig 20, this produces:

Stresses in frontal fillet welds, in N/mm²:

$$\tau_1 = \frac{P_1}{2a(\ell_1 + \ell_2)}$$
$$\tau_1 = \frac{P_1}{2a(\ell_1 + \ell_2)} \pm \frac{P_2 e}{2a F_1}$$

Stresses in flank fillet welds:

$$\tau_1 = \frac{P_1}{2a(\ell_1 + \ell_2)}$$

Equivalent stresses for frontal and flank fillet welds:

$$\sigma_{V,\text{zul}} = \sqrt{\frac{\sigma_1^2 + \tau_1^2}{2}} \leq \sigma_{V,\text{zul}}$$

Figure 20: Fillet welds stressed by normal and shear forces
4.3 Fillet welds stressed by bending moments and shear forces

4.3.1 The stresses at the fixing point of a girder (a cantilever beam is given as an example in Fig 22) are calculated as follows:

a) Normal stress due to bending, in N/mm²:
\[
\sigma_n(z) = \frac{M}{J_x} \sum a
\]
where:
- \(M \) : Bending moment in way of the welded joint, in N.m
- \(J_x \) : Moment of inertia of the welded joint relative to the x-axis, in cm⁴

b) Shear stress due to shear force, in N/mm²:
\[
\tau_s(z) = \frac{Q}{10J_x \cdot 2a}
\]

Equation 1:
\[
\tau_t(z) = \frac{Q SS(z)}{10JS a}
\]

\[
\sigma_v = \sqrt{\sigma_{\perp}^2 + \tau_t^2}
\]

\[\sigma_{\perp} = \frac{P_2}{2a} + \frac{3 Pe}{a^2} \]
\[\tau_{\perp} = \frac{P_1}{2a} \]

Equivalent stress:
\[
\sigma_v = \sqrt{\sigma_{\perp}^2 + \tau_{\perp}^2} \leq \sigma_{vzul} \]

where \(\sigma_{vzul} \) is given in Tab 7.

Figure 21: Fillet welds stressed by normal and shear forces

\(\sigma_v = \sqrt{\sigma_{\perp}^2 + \tau_{\perp}^2} \leq \sigma_{vzul} \)

4.4 Fillet welds stressed by bending and torsional moments and shear forces

4.4.1 For the normal and shear stresses, in N/mm², resulting from bending, see [4.3]. Torsional stresses resulting from the torsional moment \(M_T \) are to be calculated as follows:

\[
\tau_T = \frac{M_T \cdot 10^4}{2 a_m A_m}
\]

where:
- \(M_T \) : Torsional moment, in N.m
- \(a_m \) : Mean fillet weld throat thickness, in mm
- \(A_m \) : Mean area enclosed by weld seam, in mm²

The equivalent stress composed of all three components (bending, shear and torsion) is calculated by the following formulae:

- where \(\tau_T \) and \(\tau_L \) do not have the same direction:

\[
\sigma_v = \sqrt{\sigma_{\perp}^2 + \tau_T^2} \]

- where \(\tau_T \) and \(\tau_L \) have the same direction:

\[
\sigma_v = \sqrt{\sigma_{\perp}^2 + (\tau_T + \tau_L)^2}
\]

4.5 Continuous fillet welded joints between web and flange of bending girders

4.5.1 The stress analysis has to be performed in the area of maximum shear forces.

In the case of continuous double fillet weld connections, the shear stress, in N/mm², is to be calculated as follows:

\[
\tau_s = \frac{Q S}{10J_1 \cdot 2a}
\]

where:
- \(Q \) : Shear force at the point considered, in N
S : First moment of the cross sectional area of the flange connected by the weld to the web in relation to the neutral beam axis, in cm³

J : Moment of inertia of the girder section, in cm⁴

a : Thickness of the fillet weld, in mm.

The fillet weld thickness required, in mm, is:

\[a_{w} = \frac{QS}{10J \cdot 2 \tau_{w}} \]

4.6 Intermittent fillet welded joints between web and flange of bending girders

4.6.1 The shear stress, in N/mm², is to be calculated as follows (see Fig 23):

\[\tau_{s} = \frac{QSa}{10J \cdot 2a} \frac{b}{\ell} \]

where:

\(\ell \) : Length of the fillet weld

\(b \) : Interval

\(\alpha \) : Stress concentration factor which takes into account increases in shear stress at the ends of the lengths of fillet weld seam \(\ell \) : \(\alpha = 1.1 \)

The fillet weld thickness required, in mm, is:

\[a_{w} = \frac{1.1QSb}{10J \cdot 2 \tau_{w}} \frac{\ell}{\ell} \]

Figure 23: Intermittent fillet welded joints between web and flange of bending girders

4.7 Fillet weld connections on overlapped profile joints

4.7.1 Profiles joined by means of two flank fillet welds (see Fig 24):

\[\tau_{s} = \frac{Q}{2ad} \]

\[\tau_{w} = \frac{M \cdot 10^{3}}{2acd} \]

The equivalent stress is:

\[\sigma_{V} = \sqrt{\tau_{s}^{2} + \tau_{w}^{2}} \]

where:

\(Q \) : Shear force to be transmitted, in N

\(M \) : Bending moment to be transmitted, in Nm

c, d, \(\ell_{1}, \ell_{2}, r \) : Dimensions, in mm, defined in Fig 24

\[c = r + \frac{(3\ell_{1} - \ell_{2})}{4} \]

As the influence of the shear force can generally be neglected, the required fillet weld thickness, in mm, is:

\[a_{w} = \frac{M \cdot 10^{3}}{2cd\tau_{w}} \]

or

\[a_{w} = \frac{w \cdot 10^{3}}{1,5cd} \]

where:

\(w \) : Section modulus of the joined profile, in cm³.

Figure 24 : Fillet weld connections on overlapped profile joints: case a

4.7.2 Profiles joined by means of two flank and two front fillet welds (all-round welding as shown in Fig 25):

\[\tau_{s} = \frac{Q}{a(2d + \ell_{1} + \ell_{2})} \]

\[\tau_{w} = \frac{M \cdot 10^{3}}{ac(2d + \ell_{1} + \ell_{2})} \]

The equivalent stress is:

- where \(\tau_{s} \) and \(\tau_{w} \) do not have the same direction:

\[\sigma_{V} = \sqrt{\tau_{s}^{2} + \tau_{w}^{2}} \]

- where \(\tau_{s} \) and \(\tau_{w} \) have the same direction:

\[\sigma_{V} = \tau_{s} + \tau_{w} \]

As the influence of the shear force can generally be neglected, the required fillet weld thickness, in mm, is:

\[a_{w} = \frac{M10^{3}}{2cd(1 + \ell_{1} + \ell_{2})\tau_{w}} \]

or

\[a_{w} = \frac{W10^{3}}{1,5cd(1 + \ell_{1} + \ell_{2})} \]

where:

\(c, d, \ell_{1}, \ell_{2}, r \) : Dimensions, in mm, defined in Fig 25.
4.8 Bracket joints

4.8.1 Where profiles are joined to brackets as shown in Fig 26, the average shear stress, in N/mm², is:

\[
\tau = \frac{3M - 10^4}{4ad^3} + \frac{Q}{4ad}
\]

where:

- **M**: Moment of constraint, in N.m
- **Q**: Shear force, in N
- **d**: Length of overlap, in mm.

The required fillet weld thickness, in mm, is to be calculated from the section modulus of the profile, \(w \), as follows:

\[
a_{eff} = \frac{w - 10^4}{d^2}
\]

5 Workmanship

5.1 Welding procedures and consumables

5.1.1 The various welding procedures and consumables are to be used within the limits of their approval and in accordance with the conditions of use specified in the respective approval documents.

Welding may only be performed on materials whose identity and weld ability under the given fabricating conditions can be unequivocally established by reference to markings, certificates, etc. Only welding consumables and auxiliary materials tested and approved according to the Society’s Rules and of a quality grade standards recognized by the Society appropriate to the base material to be welded may be used.

5.2 Welding operations

5.2.1 Weather protection

The area in which welding work is performed (particularly outside) is to be sheltered from wind, damp and cold. Where gas-shielded arc welding is carried out, special attention is to be paid to ensuring adequate protection against draughts. When working in the open under unfavourable weather conditions it is advisable to dry welding edges by heating.

5.2.2 Butt connection edge preparation

The edge preparation is to be of the required geometry and correctly performed. In particular, if edge preparation is carried out by flame, it is to be free from cracks or other detrimental notches.

Seam edges (groove faces) prepared by thermal cutting shall be finished by machining (e.g. grinding) if a detrimental effect on the welded joint as a result of the cutting operation cannot be ruled out. Welding edges of steel castings and forgings shall always be ground as a minimum requirement; roll scale or casting skin is to be removed.

5.2.3 Surface condition

The surfaces to be welded are to be free from rust, moisture and other substances, such as mill scale, slag caused by oxygen cutting, grease or paint, which may produce defects in the welds.

Effective means of cleaning are to be adopted particularly in connections with special welding procedures; flame or mechanical cleaning may be required.

The presence of a shop primer may be accepted, provided it has been approved by the Society.

Shop primers are to be approved by the Society for a specific type and thickness according to NR216 Materials and Welding.

5.2.4 Assembling and gap

The setting appliances and system to be used for positioning are to ensure adequate tightening adjustment and an appropriate gap of the parts to be welded, while allowing maximum freedom for shrinkage to prevent cracks or other defects due to excessive restraint.
The gap between the edges is to comply with the required tolerances or, when not specified, it is to be in accordance with normal good practice.

When preparing and assembling components, care shall be taken to ensure compliance with the weld shapes and root openings (air gaps) specified in the manufacturing documents. With single and double bevel butt welds in particular, care shall be taken to make an adequate root opening to achieve sufficient root penetration. Moisture or dirt shall be carefully removed before welding.

5.2.5 Gap in fillet weld T connections
In fillet weld T connections, a gap g, as shown in Fig 27, may not be greater than 2 mm. In the case of a gap greater than 2 mm, the throat thickness shall be increased accordingly, or a single or double-bevel weld shall be made, subject to the consent of the Surveyor. Inserts and wires may not be used as fillers.

5.2.6 Plate misalignment in butt connections
The misalignment m, measured as shown in Fig 28, between plates with the same gross thickness t is to be less than 0.15 t, without being greater than 3 mm.

5.2.7 Misalignment in cruciform connections
The misalignment m in cruciform connections, measured on the median lines as shown in Fig 29, is to be less than:
- \(\frac{t}{2} \), in general, where t is the gross thickness of the thinner abutting plate for steel grade A, B and D
- \(\frac{t}{3} \), where t is the gross thickness of the thinner abutting plate for steel grade AH32 to DH40.

The Society may require lower misalignment to be adopted for cruciform connections subjected to high stresses.

5.2.8 Assembling of aluminium alloy parts
When welding aluminium alloy parts, particular care is to be taken so as to:
- reduce as far as possible restraint from welding shrinkage, by adopting assembling and tack welding procedures suitable for this purpose
- keep possible deformations within the allowable limits.

Further specifications may be required by the Society on a case by case basis.

5.2.9 Preheating and interpass temperatures, welding in cold conditions
The need for and degree of preheating is determined by various factors, such as chemical composition, plate thickness, two or three-dimensional heat dissipation, ambient and work piece temperatures, or heat input during welding.

At low (subzero) temperatures, suitable measures shall be taken to ensure the satisfactory quality of the welds. Such measures include the shielding of components, large area preliminary warming and preheating, especially when welding with a relatively low heat input, e.g. when laying down thin fillet welds or welding thick-walled components. Wherever possible, no welding should be performed at temperatures below \(-10^\circ\text{C}\).
Normal-strength hull structural steels do not normally require preheating. In the case of corresponding thick-walled steel castings and forgings, gentle preheating to approximately 80 - 120°C is advisable. The necessary preheating temperatures of other materials (e.g. thick-walled higher tensile steels) have to comply with the applicable Society’s Rules for Materials and Welding.

Suitable preheating, to be maintained during welding, and slow cooling may be required by the Society on a case by case basis.

The preheating and interpass temperatures are to be shown in the welding procedures which have to be approved by the Society.

5.2.10 Welding sequences

Welding sequences and direction of welding are to be determined so as to minimise deformations and prevent defects in the welded connection.

All main connections are generally to be completed before the vessel is afloat.

Departures from the above provision may be accepted by the Society on a case by case basis, taking into account any detailed information on the size and position of welds and the stresses of the zones concerned, both during vessel launching and with the vessel afloat.

5.2.11 Interpass cleaning

After each run, the slag is to be removed by means of a chipping hammer and a metal brush; the same precaution is to be taken when an interrupted weld is resumed or two welds are to be connected.

5.2.12 Stress relieving

It is recommended and in some cases it may be required that special structures subject to high stresses, having complex shapes and involving welding of elements of considerable thickness (such as rudder spades and stern frames), are prefabricated in parts of adequate size and stress-relieved in the furnace, before final assembly, at a temperature within the range 550°C ÷ 620°C, as appropriate for the type of steel.

Further specifications may be required by the Society on a case by case basis.

Welding may be performed at the cold formed sections and adjacent areas of hull structural steels and comparable structural steels provided that the minimum bending radius is not less than those specified in Tab 8.

<table>
<thead>
<tr>
<th>Plate thickness t (mm)</th>
<th>Minimum inner bending radius r</th>
</tr>
</thead>
<tbody>
<tr>
<td>up to 4</td>
<td>1,0 t</td>
</tr>
<tr>
<td>up to 8</td>
<td>1,5 t</td>
</tr>
<tr>
<td>up to 12</td>
<td>2,0 t</td>
</tr>
<tr>
<td>up to 24</td>
<td>3,0 t</td>
</tr>
<tr>
<td>over 24</td>
<td>5,0 t</td>
</tr>
</tbody>
</table>

5.3 Crossing of structural elements

5.3.1 In the case of T crossing of structural elements (one element continuous, the other physically interrupted at the crossing) when it is essential to achieve structural continuity through the continuous element (continuity obtained by means of the welded connections at the crossing), particular care is to be devoted to obtaining the correspondence of the interrupted elements on both sides of the continuous element. Suitable systems for checking such correspondence are to be adopted.

6 Modifications and repairs during construction

6.1 General

6.1.1 Deviations in the joint preparation and other specified requirements, in excess of the permitted tolerances and found during construction, are to be repaired as agreed with the Society on a case by case basis.

6.2 Gap and weld deformations

6.2.1 Welding by building up of gaps exceeding the required values and repairs of weld deformations may be accepted by the Society upon special examination.

6.3 Defects

6.3.1 Defects and imperfections on the materials and welded connections found during construction are to be evaluated for possible acceptance on the basis of the applicable requirements of the Society.

Where the limits of acceptance are exceeded, the defective material and welds are to be discarded or repaired, as deemed appropriate by the Surveyor on a case by case basis.

When any serious or systematic defect is detected either in the welded connections or in the base material, the manufacturer is required to promptly inform the Surveyor and submit the repair proposal.

The Surveyor may require destructive or non-destructive examinations to be carried out for initial identification of the defects found and, in the event that repairs are undertaken, for verification of their satisfactory completion.

6.4 Repairs on structures already welded

6.4.1 In the case of repairs involving the replacement of material already welded on the hull, the procedures to be adopted are to be agreed with the Society on a case by case basis.
7 Inspections and checks

7.1 General

7.1.1 Materials, workmanship, structures and welded connections are to be subjected, at the beginning of the work, during construction and after completion, to inspections by the Building Yard suitable to check compliance with the applicable requirements, reviewed/approved plans and standards.

7.1.2 The manufacturer is to make available to the Surveyor a list of the manual welders and welding operators and their respective qualifications.

7.1.3 The manufacturer is responsible for ensuring that welders and operators are not employed under improper conditions or beyond the limits of their respective qualifications and that welding procedures are adopted within the approved limits and under the appropriate operating conditions.

7.1.4 The necessary quality of the welds is to be proved by non-destructive tests of at least the number \(N_p \) defined below, carried out at testing positions on the welded joints:

\[
N_p = c_p \frac{L}{3}
\]

where:

- \(N_p \): Number of test positions using radiographic methods with a 480 mm film length or ultrasonic methods with 1 m long test sections
- \(c_p \): Coefficient equal to:
 - for transverse framing: \(c_p = 0.8 \)
 - for longitudinal and combined construction: \(c_p = 1.0 \)
- \(L \): Rule length, in m, of the vessel, defined in Ch 1, Pt B, Ch 8, Sec 1

7.1.5 Test schedule, evaluation of results, test reports

A test schedule shall be compiled covering the tests to be performed. This schedule shall contain details of the materials used and their thicknesses and the method of testing to be applied. The positions at which the various tests are to be performed are to be agreed with the Surveyor at the beginning of the work, during construction and after completion, to ensure that welders and operators are not employed under improper conditions or beyond the limits of their respective qualifications and that welding procedures are adopted within the approved limits and under the appropriate operating conditions.

7.2 Visual and non-destructive examinations

7.2.1 All welds are to be subject to visual examination by personnel designated by the Building Yard.

7.2.2 After completion of the welding operation and workshop inspection, the structure is to be presented to the Surveyor for general visual examination at a suitable stage of fabrication. For this purpose, welds shall be readily accessible and shall normally be uncoated. Wherever possible, the results of non-destructive tests shall be presented at this juncture.

7.2.3 Non-destructive examinations are to be carried out with appropriate methods and techniques suitable for the individual applications, to be agreed with the Society.

7.2.4 Radiographic examinations are to be carried out on the welded connections of the hull in accordance with [7.3]. The Surveyor is to be informed when these examinations are performed. The results are to be made available to the Society.

7.2.5 The Society may allow radiographic examinations to be replaced by ultrasonic examinations.

7.2.6 When the visual or non-destructive examinations reveal the presence of unacceptable indications, the relevant connection is to be repaired to sound metal for an extent and according to a procedure agreed with the Surveyor. The repaired zone is then to be submitted to non-destructive examination, using a method deemed suitable by the Surveyor to verify that the repair is satisfactory. Additional examinations may be required by the Surveyor on a case by case basis.

7.2.7 Ultrasonic and magnetic particle examinations may also be required by the Surveyor in specific cases to verify the quality of the base material.

7.3 Radiographic inspection

7.3.1 A radiographic inspection is to be carried out on the welded butts of shell plating, strength deck plating as well as of members contributing to the longitudinal strength. This inspection may also be required for the joints of members subject to heavy stresses.

The requirements [7.3.2] to [7.3.5] constitute general rules: the number of radiographs may be increased where requested by the Surveyor, mainly where visual inspection or radiographic soundings have revealed major defects, specially for butts of sheerstrake, stringer plate, bilge strake or keel plate.

Provisions alteration to these rules may be accepted by the Society when justified by the organisation of the Building Yard or of the inspection department; the inspection is then to be equivalent to that deduced from [7.3.2] to [7.3.5].

7.3.2 As far as automatic welding of the panels butt welds during the premansuring stage is concerned, the Building Yard is to carry out random non-destructive testing of the welds (radiographic or ultrasonic inspection) in order to ascertain the regularity and the constancy of the welding inspection.

7.3.3 In the midship area, radiographies are to be taken at the joinings of panels.
Each radiography is situated in a butt joint at a cross-shaped welding.

In a given vessel cross-section bounded by the panels, a radiography is to be made of each butt of sheerstrake, stringer, bilge and keel plate; in addition, the following radiographies are to be taken:

- bottom plating: two
- deck plating: two
- side shell plating: two each side.

For vessels where $B + D \leq 15$ m, only one radiography for each of the above items is required.

This requirement remains applicable where panel butts are shifted or where some strakes are built independently from the panels. It is recommended to take most of these radiographies at the intersections of butt and panel seams.

Still in the midship area, a radiographic inspection is to be taken, at random, of the following main members of the structure:

- butts of continuous longitudinal bulkheads
- butts of longitudinal stiffeners, deck and bottom girders contributing to the overall strength
- assembly joints of insert plates at the corners of the openings.

7.3.4 Outwards the midship area, a programme of radiographic inspection at random is to be set up by the Building Yard in agreement with the Surveyor for the major points. It is further recommended to take:

- a number of radiographies of the very thick parts and those comprising restrained joint, such as sternframes, shaft brackets, masts
- a complete set of radiographies or to increase the number of radiographies for the first joint of a series of identical joints. This recommendation is applicable not only to the assembly joints of prefabricated members completed on the slip, but also to joints completed in the workshop to prepare such prefabricated members.

7.3.5 Where a radiography is rejected and where it is decided to carry out a repair, the Building Yard is to determine the length of the defective part, then a set of inspection radiographies of the repaired joint and of adjacent parts is to be taken. Where the repair has been decided by the inspection office of the Building Yard, the film showing the initial defect is to be submitted to the Surveyor together with the film taken after repair of the joint.
SECTION 2 PROTECTION OF HULL METALLIC STRUCTURES

Symbols

\(t \) : Thickness, in mm.

1 Protection by coating

1.1 General

1.1.1 It is the responsibility of the Building Yard and the Owner to choose the coating and have it applied in accordance with the manufacturer’s requirements.

1.1.2 Information and recommendations aiming to fulfilling the requirements of this Section are developed in NI607 Guidelines for Corrosion Protection Applicable to Inland Navigation Vessels.

1.2 Structures to be protected

1.2.1 All areas endangered by corrosion are to be protected by a suitable corrosion protective coating.

1.2.2 All brackish water ballast spaces with boundaries formed by the hull envelope are to have a corrosion protective coating, epoxy or equivalent, applied in accordance with the manufacturer’s requirements.

1.2.3 Corrosion protective coating is not required for internal surfaces of spaces intended for the carriage of cargo oil or fuel oil.

1.2.4 Narrow spaces are generally to be filled by an efficient protective product, particularly at the ends of the vessel where inspections and maintenance are not easily practicable due to their inaccessibility.

2 Protection against galvanic corrosion in tanks

2.1 General

2.1.1 Suitable protection measures shall take place, where the danger of galvanic corrosion exists.

2.1.2 Non-stainless steel is to be electrically insulated from stainless steel or from aluminium alloys.

2.1.3 Where stainless steel or aluminium alloys are fitted in the same tank as non-stainless steel, a protective coating is to cover both materials.

3 Cathodic protection of tanks

3.1 General

3.1.1 Ballast water tanks or other internal spaces endangered by corrosion due to brackish or harbour water may be provided with cathodic protection. Cathodic protection may be fitted in addition to the required corrosion protective coating, if any.

3.1.2 Uncoated stainless steels are not to be protected cathodically if they are suitable for withstanding the corrosion stress.

Coated stainless steels must be cathodically protected in the submerged zone.

3.1.3 Where fitted, cathodic protection shall comply with the manufacturer’s instructions / recommendations.

4 Protection of bottom by ceiling

4.1 General

4.1.1 In single bottom vessels, ceiling is to be laid on the floors from side to side up to the upper bilge.

4.1.2 In double bottom vessels, ceiling is to be laid over the inner bottom and lateral bilges, if any.

Ceiling on the inner bottom is not required where the thickness of the inner bottom is increased in accordance with Pt D, Ch 1, Sec 2, [3.7.4] or Pt D, Ch 1, Sec 2, [4.6.4].

4.2 Arrangement

4.2.1 Planks forming ceiling over the bilges and on the inner bottom are to be easily removable to permit access for maintenance.

4.2.2 Where the double bottom is intended to carry fuel oil, ceiling on the inner bottom is to be separated from the plating by means of battens 30 mm high, in order to facilitate the drainage of oil leakages to the bilges.

4.2.3 Where the double bottom is intended to carry water, ceiling on the inner bottom may lie next to the plating, provided a suitable corrosion protection is applied beforehand.

4.2.4 The Building Yard is to take care that the attachment of ceiling does not affect the tightness of the inner bottom.
4.2.5 In single bottom vessels, ceiling is to be fastened to the reversed frames by galvanized steel bolts or any other equivalent detachable connection. A similar connection is to be adopted for ceiling over the lateral bilges in double bottom vessels.

4.3 Scantling

4.3.1 The thickness of ceiling boards, in mm, is to be at least equal to the smaller of the following values:
- vessels intended to carry ore or concentrated loads, and not fitted with a double bottom:
 - \(t = 50 \)
 - \(t = 0.45 \times (L + 160) \)
- other vessels:
 - \(t = 25 \)
 - \(t = 0.3 \times (L + 160) \)

with:
\[s \quad : \quad \text{Floor spacing, in m.} \]

Where the floor spacing is large, the thicknesses may be considered by the Society on a case by case basis. Under cargo hatchways, the thickness of ceiling is to be increased by 15 mm.

4.3.2 Where a side ceiling is provided, it is to be secured every 4 frame spacings to the side frames by an appropriate system. Its thickness may be taken equal to 0.7 times that of the bottom ceiling, without being less than 20 mm. The batten spacing is not, as a rule, to exceed 0.2 m.

5 Protection of decks by wood sheathing

5.1 Deck not entirely plated

5.1.1 The wood used for sheathing is to be of good quality dry teak or pine, without sapwood or knots. The sheathing thickness, in mm, is not to be less than:
- teak: \(t = \frac{(L + 55)}{3} \geq 40 \)
- pine: \(t = \frac{(L + 100)}{3} \)

5.1.2 The width of the planks is not to exceed twice their thickness. Their butts are to be adequately shifted so that, if two butts occur in the same frame spacing, they are separated by at least three planks. Planks are to be secured to every other frame by means of 12 mm bolts. On small vessels, galvanized steel screws are permitted.

5.1.3 Wooden decks are to be carefully caulked, to the satisfaction of the Surveyor.

5.2 Wood sheathed plate deck

5.2.1 As far as practicable, plate decks above passenger or crew cabins are to be sheathed with wood planks.

5.2.2 The plank thickness, in mm, is not to be less than 40 nor than:
- teak: \(t = \frac{(L + 40)}{3} \)
- pine: \(t = \frac{(L + 85)}{3} \)
1 Testing procedures of watertight compartments

1.1 Application

1.1.1 These test procedures are to confirm the watertightness of tanks and watertight boundaries, and the structural adequacy of tanks forming a part of the watertight subdivisions of vessels. These procedures may also be applied to verify the weathertightness of structures and onboard outfitting.

The tightness of all tanks and watertight boundaries of vessels during new construction and vessels relevant to major conversions or major repairs is to be confirmed by these test procedures prior to the delivery of the vessels.

Note 1: Major repair means a repair affecting structural integrity.

1.1.2 Testing procedures are to be carried out in accordance with the requirements [1.4.1] to [1.9.1] in association with the following alternative procedures for [1.4.2] and alternative test requirements for Tab 2.

a) The tank boundaries are to be tested from at least one side. The tanks for structural test are to be selected so that all representative structural members are tested for the expected tension and compression.

b) Structural tests are to be carried out for at least one tank of a group of tanks having structural similarity (i.e. same design conditions, alike structural configurations with only minor localised differences determined to be acceptable by the attending Surveyor) on each vessel provided all other tanks are tested for leaks by an air test. The acceptance of leak testing using an air test instead of a structural test does not apply to cargo space boundaries adjacent to other compartments in tankers or to the boundaries of tanks for segregated cargoes or pollutant cargoes in other types of vessels.

c) Additional tanks may require structural testing if found necessary after the structural testing of the first tank.

d) Where the structural adequacy of the tanks of a vessel were verified by the structural testing required in Tab 2, subsequent vessels in the series (i.e. sister ships built from the same plans at the same building yard) may be exempted from structural testing of tanks, provided that:

1) water-tightness of boundaries of all tanks is verified by leak tests and thorough inspections are carried out.
2) structural testing is carried out for at least one tank of each type among all tanks of each sister vessel.
3) additional tanks may require structural testing if found necessary after the structural testing of the first tank or if deemed necessary by the attending Surveyor.

For cargo space boundaries adjacent to other compartments in tankers and combination carriers or boundaries of tanks for segregated cargoes or pollutant cargoes in other types of vessels, the provisions of b) shall apply in lieu of item 2).

e) Sister ships built (i.e. keel laid) two years or more after the delivery of the last vessel of the series, may be tested in accordance with d) at the discretion of the Society, provided that:

1) general workmanship has been maintained (i.e. there has been no discontinuity of shipbuilding or significant changes in the construction methodology or technology at the yard, building yard personnel are appropriately qualified and demonstrate an adequate level of workmanship as determined by the Society); and
2) an NDT plan is implemented and evaluated by the Society for the tanks not subject to structural tests. Shipbuilding quality standards for the hull structure during new construction are to be reviewed and agreed during the kick-off meeting. Structural fabrication is to be carried out in accordance with a recognised fabrication standard which has been accepted by the Society prior to the commencement of fabrication/construction. The work is to be carried out in accordance with the Rules and under survey of the Society.

1.1.3 All gravity tanks and other boundaries required to be watertight or weathertight are to be tested in accordance with these procedures and proven tight and structurally adequate as follows:

- gravity tanks for their tightness and structural adequacy
- watertight boundaries other than tank boundaries for their watertightness
- weathertight boundaries for their weathertightness.

Note 1: Gravity tank means a tank that is subject to vapour pressure not greater than 70 kPa.

1.1.4 Testing of structures not listed in Tab 2 or Tab 3 is to be specially considered by the Society.

1.2 General

1.2.1 Tests are to be carried out in the presence of a Surveyor at a stage sufficiently close to the completion of work, with all the hatches, doors, windows, etc., installed and all the penetrations including pipe connections fitted, and before any ceiling and cement work is applied over the joints. Specific test requirements are given in [1.6] and Tab 2. For the timing of the application of coating and the provision of safe access to joints, see [1.7], [1.8] and Tab 4.
1.3 Definitions

1.3.1 Structural test
A structural test is a test to verify the structural adequacy of tank construction. This may be a hydrostatic test or, where the situation warrants, a hydropneumatic test.

1.3.2 Leak test
A leak test is a test to verify the tightness of a boundary. Unless a specific test is indicated, this may be a hydrostatic/hydropneumatic test or an air test. A hose test may be considered to be an acceptable form of leak test for certain boundaries, as indicated by footnote (3) of Tab 2.

1.3.3 Each type of structural and leak test is defined in Tab 1.

1.4 Structural test procedures

1.4.1 Type and time of test
Where a structural test is specified in Tab 2 and Tab 3, a hydrostatic test in accordance with [1.6.1] is acceptable. Where practical limitations (strength of building berth, light density of liquid, etc.) prevent the performance of a hydrostatic test, a hydropneumatic test in accordance with [1.6.2] may be accepted instead.

A hydrostatic or hydropneumatic test for the confirmation of structural adequacy may be carried out while the vessel is afloat, provided the results of a leak test are confirmed to be satisfactory before the vessel is set afloat.

1.4.2 Testing schedule for new construction and major structural conversion or repair
a) tanks which are intended to hold liquids, and which form part of the watertight subdivision of the vessel, shall be tested for tightness and structural strength as indicated in Tab 2 and Tab 3
b) tank boundaries are to be tested from at least one side. The tests for the structural test are to be selected so that all the representative structural members are tested for the expected tension and compression
c) watertight boundaries of spaces other than tanks may be exempted from the structural test, provided that the boundary watertightness of the exempted spaces is verified by leak tests and inspections. The tank structural test is to be carried out and the requirements from item a) to item b) are to be applied for ballast holds, chain lockers
d) tanks which do not form part of the watertight subdivision of the vessel, may be exempted from structural testing provided that the boundary watertightness of the exempted spaces is verified by leak tests and inspections.

1.5 Leak test procedures

1.5.1 For the leak tests specified in Tab 2, tank air tests, compressed air fillet weld tests and vacuum box tests, in accordance respectively with [1.6.3], [1.6.5] and [1.6.6], or their combinations, are acceptable. Hydrostatic or hydropneumatic tests may be also accepted as leak tests, provided [1.7], [1.8] and [1.9] are complied with. Hose tests, in accordance with [1.6.3], are also acceptable for items 14 to 17 referred to in Tab 2, taking footnote (3) into account.

1.5.2 Air tests of joints may be carried out at the block stage, provided that all work on the block that may affect the tightness of a joint is completed before the test. The application of the leak test for each type of welded joint is specified in Tab 4. See also [1.7.1] for the application of final coatings, [1.8] for the safe access to joints, and Tab 4 for the summary.

1.6 Test methods

1.6.1 Hydrostatic test
Unless another liquid is approved, hydrostatic tests are to consist in filling the space with fresh water or river/sea water, whichever is appropriate for testing, to the level specified in Tab 2 or Tab 3. See also [1.9].

In case where a tank is intended for cargoes having a density higher than the density of the liquid used for the test, the test pressure height is to be adjusted is to simulate the actual loading as far as practicable.

All the external surfaces of the tested space are to be examined for structural distortion, bulging and buckling, any other related damage, and leaks.

1.6.2 Hydropneumatic test
Hydropneumatic tests, where approved, are to be such that the test condition, in conjunction with the approved liquid level and supplemental air pressure, simulates the actual loading as far as practicable. The requirements and recommendations in [1.6.4] for tank air tests apply also to hydropneumatic tests. See also [1.9].

All the external surfaces of the tested space are to be examined for structural distortion, bulging and buckling, any other related damage, and leaks.

1.6.3 Hose test
Hose tests are to be carried out with the pressure in the hose nozzle maintained at least at 2·10^5 Pa during the test. The nozzle is to have a minimum inside diameter of 12 mm and to be at a perpendicular distance from the joint not exceeding 1,5 m. The water jet is to impinge upon the weld.

Where a hose test is not practical because of possible damage to machinery, electrical equipment insulation, or outfitting items, it may be replaced by a careful visual examination of the welded connections, supported where necessary by means such as a dye penetrant test or an ultrasonic leak test, or equivalent.

1.6.4 Tank air test
All boundary welds, erection joints and penetrations including pipe connections are to be examined in accordance with approved procedures and under a stabilized pressure differential above atmospheric pressure not less than 0,15·10^5 Pa, with a leak-indicating solution (such as soapy water/detergent or a proprietary solution) applied.

A U-tube having a height sufficient to hold a head of water corresponding to the required test pressure is to be arranged. The cross-sectional area of the U-tube is to be less than that of the pipe supplying air to the tank. Arrangements involving the use of two calibrated pressure gauges to verify the required test pressure may be accepted taking into account appropriate safe precautions.
A double inspection of the tested welds is to be carried out. The first inspection is to be made immediately upon application of the leak indication solution; the second one is to be made approximately four or five minutes after, in order to detect those smaller leaks which may take time to appear.

1.6.5 Compressed air fillet weld test

In this air test, compressed air is injected from one end of a fillet welded joint, and the pressure verified at the other end of the joint by a pressure gauge. Pressure gauges are to be arranged so that an air pressure of at least 0.15×10^5 Pa can be verified at each end of any passage within the portion being tested.

Note 1: Where a leak test is required for fabrication involving partial penetration welds, a compressed air test is also to be carried out in the same manner as to fillet weld where the root face is large, i.e. 6-8 mm.

1.6.6 Vacuum box test

A box (vacuum testing box) with air connections, gauges and an inspection window is placed over the joint with a leak-indicating solution applied on the weld cap vicinity. The air within the box is removed by an ejector to create a vacuum of 0.20×10^5 to 0.26×10^5 Pa inside the box.

1.6.7 Ultrasonic test

An ultrasonic echo transmitter is to be arranged on the inside of a compartment, and a receiver on the outside. The watertight/weathertight boundaries of the compartment are scanned with the receiver, in order to detect an ultrasonic leak indication. Any leakage in the sealing of the compartment is indicated at a location where sound is detectable by the receiver.

1.6.8 Penetration test

For the test of butt welds or other weld joints, a low surface tension liquid is applied on one side of a compartment boundary or a structural arrangement. If no liquid is detected on the opposite sides of the boundaries after the expiration of a defined period of time, this indicates tightness of the boundaries. In certain cases, a developer solution may be painted or sprayed on the other side of the weld to aid leak detection.

1.6.9 Other test

Other methods of testing may be considered by the Society upon submission of full particulars prior to the commencement of the tests.

1.7 Application of coating

1.7.1 Final coating

For butt joints welded by means of an automatic process, the final coating may be applied at any time before completion of a leak test of the spaces bounded by the joints, provided that the welds have been visually inspected with care, to the satisfaction of the Surveyor.

The Surveyors reserve the right to require a leak test prior to the application of a final coating over automatic erection butt welds.

For all the other joints, the final coating is to be applied after the completion of the joint leak test. See also Tab 4.

1.7.2 Temporary coating

Any temporary coating which may conceal defects or leaks is to be applied at the same time as for a final coating (see [1.7.1]). This requirement does not apply to shop primers.
<table>
<thead>
<tr>
<th>Item</th>
<th>Tank or boundaries to be tested</th>
<th>Test type</th>
<th>Test head or pressure</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Double bottom tanks</td>
<td>leak and structural</td>
<td>See Ch 3, Sec 4, Tab 13</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Double bottom voids</td>
<td>leak</td>
<td>See [1.6.4] to [1.6.6], as applicable</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Double side tanks</td>
<td>leak and structural</td>
<td>See Ch 3, Sec 4, Tab 13</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Double side voids</td>
<td>leak</td>
<td>See [1.6.4] to [1.6.6], as applicable</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Deep tanks other than those listed elsewhere in this Table</td>
<td>leak and structural</td>
<td>The greater of: • top of the overflow • 1,0 m above top of tank (2)</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Cargo oil tanks</td>
<td>leak and structural</td>
<td>See Ch 3, Sec 4, Tab 13</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Peak tanks</td>
<td>leak and structural</td>
<td>See Ch 3, Sec 4, Tab 13</td>
<td>After peak to be tested after installation of stern tube</td>
</tr>
<tr>
<td>8</td>
<td>a) Fore peak spaces with equipment</td>
<td>leak</td>
<td>See [1.6.3] to [1.6.6], as applicable</td>
<td></td>
</tr>
<tr>
<td></td>
<td>b) Fore peak voids</td>
<td>leak</td>
<td>See [1.6.4] to [1.6.6], as applicable</td>
<td></td>
</tr>
<tr>
<td></td>
<td>c) Aft peak spaces with equipment</td>
<td>leak</td>
<td>See [1.6.3] to [1.6.6], as applicable</td>
<td></td>
</tr>
<tr>
<td></td>
<td>d) Aft peak voids</td>
<td>leak</td>
<td>See [1.6.4] to [1.6.6], as applicable</td>
<td>After peak to be tested after installation of stern tube</td>
</tr>
<tr>
<td>9</td>
<td>Cofferdams</td>
<td>leak</td>
<td>See [1.6.4] to [1.6.6], as applicable</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>a) Watertight bulkheads</td>
<td>leak (6)</td>
<td>See [1.6.3] to [1.6.6], as applicable</td>
<td></td>
</tr>
<tr>
<td></td>
<td>b) Superstructure end bulkheads</td>
<td>leak</td>
<td>See [1.6.3] to [1.6.6], as applicable</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Watertight doors below freeboard or bulkhead deck</td>
<td>leak (4)</td>
<td>See [1.6.3] to [1.6.6], as applicable</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Double plate rudder blades</td>
<td>leak</td>
<td>See [1.6.4] to [1.6.6], as applicable</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Shaft tunnels clear of deep tanks</td>
<td>leak (3)</td>
<td>See [1.6.3] to [1.6.6], as applicable</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Shell doors</td>
<td>leak (3)</td>
<td>See [1.6.3] to [1.6.6], as applicable</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Weathertight hatch covers and closing appliances</td>
<td>leak (3)</td>
<td>See [1.6.3] to [1.6.6], as applicable</td>
<td>Hatch covers closed by tarpaulins and battens excluded</td>
</tr>
<tr>
<td>16</td>
<td>Chain lockers</td>
<td>leak and structural</td>
<td>Head of water up to top of chain pipe</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Ballast ducts</td>
<td>leak and structural</td>
<td>The greater of: • ballast pump maximum pressure • setting of any pressure relief valve</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Fuel oil tanks</td>
<td>leak and structural</td>
<td>See Ch 3, Sec 4, Tab 13</td>
<td></td>
</tr>
</tbody>
</table>

(1) See [1.4.2], item b).
(2) The top of a tank is the deck forming the top of the tank, excluding any hatchways.
(3) Hose test may be also considered as a medium of the leak test. See [1.3.2].
(4) Where watertightness of watertight doors has not been confirmed by a prototype test, a hydrostatic test (filling of the watertight spaces with water) is to be carried out.
(5) As an alternative to the hose test, other testing methods listed in [1.6.7] to [1.6.9] may be acceptable, subject to adequacy of such testing methods being verified. For watertight bulkheads (item 10 a)), alternatives to the hose test may be used only where the hose test is not practicable.
(6) A structural test (see [1.4.2])) is also to be carried out for a representative cargo hold in case of cargo holds intended for in-port ballasting. The filling level required for the structural test of such cargo holds is to be the maximum loading that will occur in-port, as indicated in the loading manual.
1.8 Safe access to joints

1.8.1 For leak tests, a safe access to all joints under examination is to be provided. See also Tab 4.

1.9 Hydrostatic or hydropneumatic tightness test

1.9.1 In cases where the hydrostatic or hydropneumatic tests are applied instead of a specific leak test, the examined boundaries are to be dew-free, otherwise small leaks are not visible.

2 Miscellaneous

2.1 Watertight decks, trunks, etc.

2.1.1 After completion, a hose or flooding test is to be applied to watertight decks and a hose test to watertight trunks, tunnels and ventilators.

2.2 Steering nozzles

2.2.1 Upon completion of manufacture, the nozzle is to be subjected to a leak test.

Table 3 : Additional test requirements for special service vessels/tanks

<table>
<thead>
<tr>
<th>Item</th>
<th>Type of vessel/tank</th>
<th>Structure to be tested</th>
<th>Type of test</th>
<th>Test head or pressure</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Liquefied gas carriers</td>
<td>Integral tanks</td>
<td>leak and structural</td>
<td>See Ch 3, Sec 4, Tab 13</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Independent pressure tanks</td>
<td>structural</td>
<td>See Pt C, Ch 1, Sec 3, [7.3]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Independent gravity tanks</td>
<td>See applicable NR467, Pt D, Ch 9, Sec 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hull structure supporting membrane or semi-membrane tanks</td>
<td>See applicable NR467, Pt D, Ch 9, Sec 4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Edible liquid tanks</td>
<td>Independent tanks</td>
<td>leak and structural (1)</td>
<td>The greater of:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• top of the overflow</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• 1,0 m above top of tank (2)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Chemical carriers</td>
<td>Integral or independent cargo tanks</td>
<td>leak and structural (1)</td>
<td>See Ch 3, Sec 4, Tab 13</td>
<td></td>
</tr>
</tbody>
</table>

(1) See [1.4.2], item b).
(2) Top of tank is deck forming the top of the tank excluding any hatchways.

Table 4 : Application of leak test, coating, and provision of safe access for the different types of welded joints

<table>
<thead>
<tr>
<th>Type of welded joints</th>
<th>Leak test</th>
<th>Coating (1)</th>
<th>Safe access (2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Before leak test</td>
<td>After leak test but before structural test</td>
<td>Leak test</td>
</tr>
<tr>
<td>Butt</td>
<td>not required</td>
<td>allowed (3)</td>
<td>not applicable</td>
</tr>
<tr>
<td>Automatic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manual or semi-automatic (4)</td>
<td>required</td>
<td>not allowed</td>
<td>allowed</td>
</tr>
<tr>
<td>Fillet</td>
<td>Boundary including penetrations</td>
<td>required</td>
<td>not allowed</td>
</tr>
</tbody>
</table>

(1) Coating refers to internal (tank/hold) coating, where applied, and external (shell/deck) painting. It does not refer to shop primer.
(2) Temporary means of access for verification of the leak test.
(3) The condition applies provided that the welds have been visually inspected with care, to the satisfaction of the Surveyor.
(4) Flux Core Arc Welding (FCAW) semi-automatic butt welds need not be tested, provided careful visual inspections show continuous and uniform weld profile shape, free from repairs, and the results of NDT show no significant defects.