Approval Testing of Welders

January 2018

Rule Note
NR 476 DT R01 E
1. INDEPENDENCY OF THE SOCIETY AND APPLICABLE TERMS

1.1. The Society shall remain at all times an independent contractor and neither the Society nor any of its officers, employees, servants, agents or subcontractors shall be or act as an employee, servant, agent or officer of the Client or any other Party hereto or in the performance of the Services. The Society is not and may not be considered as an underwriter, broker, agent or charterer subject to any form of underwriting assurance, rate, index, premium, valuation, commission, rate, index, premium, valuation, commission, warranty, guarantee, indemnity or other obligations as a result of the interventions of the Society.

1.2. The Services are carried out by the Society according to the applicable Rules and to the Bureau Veritas' Code of Ethics. The Society only is qualified to apply and interpret its Rules.

1.3. The Client acknowledges the latest versions of the Conditions of and of the applicable Rules to performing the Services’ application.

1.4. Unless otherwise agreed in Writing, the Services are performed at the Client’s cost and risk, in accordance with the applicable Rules applying to the Services’ performance. The Client has entire control over the Certificates issued and the information made available to the Client to the Society for the performance of the Services. This Client shall be solely responsible for the presentation of all documentation to the Society.

1.5. The Client acknowledges the latest versions of the Conditions of and of the applicable Rules to performing the Services’ application.

1.6. The Services are performed by the Society at all times in an independent capacity and no Party on the part of the Society shall be an agent of any other Party hereto in the performance of the Services.

1.7. The Client acknowledges that the Conditions of and the applicable Rules apply exclusively to the Services. No other terms shall apply whether express or implied.

2. DEFINITIONS

2.1. ‘Certificate’ means a class certificate, attestations and reports following tests and trials, and surveys and the surveys and the certificates are given on the assumption that the Client is aware of such standards and international and national regulations or standards, in particular by delegation from different governments that can result in a certificate.

2.2. “Classification” means the classification of a Unit that can result in the issuance of a certificate of compliance with the Rules.

2.3. “Classification” means the classification of a Unit that can result in the issuance of a certificate of compliance with the Rules.

2.4. “Client” means the Party and its officers, employees, servants, agents or subcontractors that have signed the Conditions.

2.5. “Conditions” means the terms and conditions set out in the present document.

2.6. “International” means International Maritime and/or Offshore industries practices.

2.7. “Intellectual Property” means all patents, rights to inventions, utility models, marks, and social registers, trade marks, logos, service marks, trade dress, business and domain names, rights in trade dress or get-up, rights in goodwill or to sue for passing off, unfair competition rights, rights in designs, rights in computer software, database rights, topography rights, rights in software, rights in confidential information (including know-how and trade secrets), methods and proto-cols for Services, and any other intellectual property rights, in each case whether capable of registration or not, including any applications for and renewals, revocations or extensions of such rights, and all similar or equivalent rights or forms of protection in any part of the world.

2.8. “Joint Venture” means the Society and the Client together.

2.9. “Party” means the Society or the Client.

2.10. “Register” means the register published annually by the Society.

2.11. “Rules” means the Society’s classification rules, guidance notes and other documents. The Rules, procedures and instructions of the Society take into account at the date of their preparation the state of currently available and proven technical minimum requirements but are not a standard or a code of construction neither a guide nor a manual, a safety handbook or a guide of professional practices, all of which are assumed to be known in detail and carefully followed at all times by the Client.

2.12. Services means the services set out in clauses 2.2 and 2.3 but also those services related to Classification such as inspections, surveys, and certification, ship and port security certification, training activities, all activities and duties incumbent upon the Client or the Client’s representatives, agents, contractors and subcontractors and shall comply with all applicable safety regulations.

2.13. “Definitions” herein take precedence over other definitions which may appear in other documents issued by the Society.

3. SCOPE AND PERFORMANCE

3.1. The Society shall perform the Services according to the applicable national and international standards and Industry Practice and adhere to the assumption that the Client is aware of such standards and Industry Practice.
SECTION 1 GENERAL

SECTION 2 QUALIFICATION SCHEME FOR WELDERS OF HULL STRUCTURAL STEELS

SECTION 3 QUALIFICATION SCHEME FOR WELDERS OF ALUMINIUM ALLOYS HULL STRUCTURES

SECTION 4 QUALIFICATION SCHEME FOR WELDERS FOR OTHER PRODUCTIONS

APPENDIX 1 WELDER’S QUALIFICATION CERTIFICATE
Section 1 General

<table>
<thead>
<tr>
<th>1</th>
<th>General</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Scope</td>
<td></td>
</tr>
<tr>
<td>1.2</td>
<td>Variables for qualification of welders</td>
<td></td>
</tr>
</tbody>
</table>

Section 2 Qualification Scheme for Welders of Hull Structural Steels

<table>
<thead>
<tr>
<th>1</th>
<th>General</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Scope</td>
<td></td>
</tr>
<tr>
<td>1.2</td>
<td>Provisions about existing certificates</td>
<td></td>
</tr>
<tr>
<td>1.3</td>
<td>Welding Operators</td>
<td></td>
</tr>
</tbody>
</table>

2 Variables and range of qualification

2.1	Welding process
2.2	Welding consumables
2.3	Base Metal
2.4	Range of thickness
2.5	Range of tubular section diameter
2.6	Welding Position
2.7	Type of joint

3 Qualification test

3.1	General
3.2	Test assemblies
3.3	Examinations and tests
3.4	Retest

4 Certification

| 4.1 | Certification |

5 Period of validity

| 5.1 | Initial approval |
| 5.2 | Maintenance of the approval |

Section 3 Qualification Scheme for Welders of Aluminium Alloys Hull Structures

<table>
<thead>
<tr>
<th>1</th>
<th>General</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Scope</td>
<td></td>
</tr>
<tr>
<td>1.2</td>
<td>Welding Operators</td>
<td></td>
</tr>
</tbody>
</table>

2 Variables and range of qualification

2.1	Welding process
2.2	Welding Consumables
2.3	Base Metal
2.4	Range of thickness
2.5	Range of tubular section diameter
2.6	Welding Position
2.7	Type of joint
Section 4 Qualification Scheme for Welders for Other Productions

1 General 21
1.1 Scope
1.2 Welding Operators

2 Variables and range of qualification 21
2.1 Reference to recognised standard
2.2 Welding process
2.3 Welding Consumables
2.4 Base Metal
2.5 Range of thickness
2.6 Range of pipe diameter
2.7 Welding Position
2.8 Type of joint

3 Qualification test 22
3.1 Scope

4 Certification 22
4.1 Certification

5 Period of validity 22
5.1 Initial approval
5.2 Maintenance of the approval

Appendix 1 Welder’s Qualification Certificate

1 Welder’s qualification certificate 23
1.1
SECTION 1 GENERAL

1 General

1.1 Scope

1.1.1 This document gives requirements for a qualification scheme for welders intended to be engaged in fusion welding when required by applicable Bureau Veritas Rules for Classification.

1.1.2 This document is applicable to welding of hull structures or other productions both during new construction and the repair of ships.

1.1.3 The training of welders, control of their qualification and maintenance of their skills are the responsibility of shipyards and manufacturers. The Society Surveyor is to verify and be satisfied that the welders are appropriately qualified.

1.2 Variables for qualification of welders

1.2.1 A welder is to be qualified in relation to the following variables of welding:

 a) base metal
 b) welding consumables type
 c) welding process
 d) type of welded joint
 e) plate thickness
 f) welding position.
SECTION 2 QUALIFICATION SCHEME FOR WELDERS OF HULL STRUCTURAL STEELS

1 General

1.1 Scope

1.1.1 This Section gives requirements for a qualification scheme for welders intended to be engaged in the fusion welding of steels for hull structures.

1.1.2 This qualification scheme does not cover welders engaged in oxy-acetylene welding.

1.1.3 This qualification scheme does not cover welding of pipes.

1.1.4 This qualification scheme covers welding of fillet weld of tubular section to plate with diameter D > 25 mm.

1.1.5 Those welders intended to be engaged in welding of hull structures in shipyards and manufacturers shall be tested and qualified in accordance with this scheme and issued with a qualification certificate endorsed by the Society.

1.1.6 Welders or welding operators qualified in accordance with national or international welder qualification standards may also be engaged in welding of hull structures at the discretion of the Society provided that the qualification testing, range of approval and revalidation requirements are considered equivalent to this document.

1.2 Provisions about existing certificates

1.2.1 This document does not invalidate welder’s qualifications issued and accepted by the Society before 1 January 2018 provided the welder’s qualifications are considered by the Society to meet the technical intent of this document. These qualifications are to be renewed in accordance with this document latest by 31 December 2020.

Certificates that expire after 1 January 2018 are to be renewed in accordance with this document.

The welder’s or welding operator’s qualifications which have not been required by the Society’s Rules before 1 January 2018, are to be initially issued in accordance with this document by the 31 December 2020 at the latest.

1.3 Welding Operators

1.3.1 The welding operators responsible for setting up and/or adjustment of fully mechanized and automatic equipment, such as submerged arc welding, gravity welding, electro-gas welding and Metal Active Gas (MAG) welding with auto-carriage, etc., must be qualified whether he operates the equipment or not.

However a welding operator, who solely operates the equipment without responsibility for setting up and/or adjustment, does not need qualification provided that he has experience of the specific welding work concerned and the production welds made by the operators are of the required quality.

The qualification test and approval range of the welding operator are left to the discretion of the Society with reference to ISO 14732.

2 Variables and range of qualification

2.1 Welding process

2.1.1 The welding processes for welder’s qualification are to be classified in Table 1 as, Manual welding (M), Semi-automatic welding/Partly mechanized welding (S) and TIG welding (T).

Each testing normally qualifies only for one welding process. A change of welding process requires a new qualification test.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Welding process in actual welding works</th>
<th>ISO 4063</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>Manual welding</td>
<td>Manual metal arc welding (metal arc welding with covered electrode)</td>
</tr>
<tr>
<td>S</td>
<td>Semi-automatic welding / Partly mechanized welding</td>
<td>Metal inert gas (MIG) welding</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Metal active gas (MAG) welding</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Flux-cored arc (FCA) welding</td>
</tr>
<tr>
<td>T</td>
<td>TIG welding</td>
<td>Tungsten inert gas (TIG) welding</td>
</tr>
</tbody>
</table>

The Society may require separate qualification for solid wires, metal cored wires and flux-cored wires as follows:

(1) A change from MAG welding with solid wires (135) to that with metal cored wires (138), or vice versa is permitted.

(2) A change from a solid or metal cored wire (135/138) to a flux-cored wire (136) or vice versa requires a new qualification test.
2.2 Welding consumables

2.2.1 Welding consumables used for qualification tests are to be approved by the Society in accordance with NR216, Ch 5, Sec 2, [2] to [9] and [11] unless otherwise agreed. The welding consumable grade is to be acceptable for the parent metal used for qualification tests. Welding with filler material qualifies for welding without filler material, but not vice versa.

2.2.2 For manual metal arc welding, qualification tests are required using basic, acid or rutile covered electrodes. Qualification tests performed with a type of covered electrode may extend qualification to the use of other types of covered electrode as specified in Tab 2.

Table 2: Range of qualification for the type of covered electrode

<table>
<thead>
<tr>
<th>Type of covered electrode used for qualification test assemblies</th>
<th>Range of qualification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acid or rutile-acid covering</td>
<td>Acid or rutile-acid covering</td>
</tr>
<tr>
<td>Rutile or rutile-basic or rutile-cellulose or rutile-thick covering</td>
<td>Acid or rutile-acid covering or rutile or rutile-basic or rutile-cellulose or rutile-thick covering</td>
</tr>
<tr>
<td>Basic covering</td>
<td>Acid or rutile-acid covering or rutile or rutile-basic or rutile-cellulose or rutile-thick covering or basic covering</td>
</tr>
<tr>
<td>Cellulosic covering</td>
<td>Cellulosic covering</td>
</tr>
</tbody>
</table>

2.3 Base Metal

2.3.1 Base metals for qualification of welders or welding operators are combined into one group with a specified minimum yield strength $R_{eH} \leq 460$ N/mm². The welding of any hull structural steel in this group covers qualification of the welder or welding operator for the welding of any one steel grade (rolled products, castings, forgings) within this group.

The use of equivalent structural steel grades may be considered by the Society for the qualification tests.

2.4 Range of thickness

2.4.1 The qualified plate thickness range arising from the welder qualification test plate thickness is shown in Tab 3.

Table 3: Plate thicknesses for welder's qualification

<table>
<thead>
<tr>
<th>Thickness T of test assembly (mm)</th>
<th>Qualified plate thickness range t (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T < 3$</td>
<td>t to $2t$</td>
</tr>
<tr>
<td>$3 \leq T < 12$</td>
<td>3 mm to $2t$</td>
</tr>
<tr>
<td>$T \geq 12$</td>
<td>$t \geq 3$ mm</td>
</tr>
</tbody>
</table>

2.5 Range of tubular section diameter

2.5.1 The qualified tubular section diameter range arising from the tubular section diameter used during the welder qualification test is shown in Tab 4.

Table 4: Tubular section diameters for welder's qualification

<table>
<thead>
<tr>
<th>Diameter D of test assembly (mm)</th>
<th>Qualified diameter range (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$D > 25$</td>
<td>$\geq 0.5 D$ (25 mm min.)</td>
</tr>
</tbody>
</table>

2.6 Welding Position

2.6.1 The welding positions qualified as a result of the actual welding position used in a satisfactory welder’s qualification test, are shown in Tab 5 and Tab 6.

Diagrams showing the definitions of weld position used in Tab 5 and Tab 6 are shown in Fig 1.

A change in the position of welding to one for which the welder is not qualified shall require new qualification testing.

The Society may require a qualification test with fillet welding for welders who are employed for fillet welding only.

Table 5: Qualified welding positions when testing with butt welding

<table>
<thead>
<tr>
<th>Qualification test position with butt weld</th>
<th>Qualified welding positions in actual welding works</th>
</tr>
</thead>
<tbody>
<tr>
<td>PA</td>
<td>PA, PB</td>
</tr>
<tr>
<td>PC</td>
<td>PA, PC, PA, PB</td>
</tr>
<tr>
<td>PE</td>
<td>PA, PC, PE, PA, PB, PC</td>
</tr>
<tr>
<td>PF</td>
<td>PA, PC, PE, PA, PB, PC, PE, PA, PB, PC, PE</td>
</tr>
<tr>
<td>PG</td>
<td>PA, PC, PE, PA, PB, PC, PE, PA, PB, PC, PE</td>
</tr>
</tbody>
</table>

Table 6: Qualified welding positions when testing with fillet welding

<table>
<thead>
<tr>
<th>Qualification test position with fillet weld</th>
<th>Qualified welding positions in actual welding works (1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PA</td>
<td>PA</td>
</tr>
<tr>
<td>PB</td>
<td>PA, PB</td>
</tr>
<tr>
<td>PC</td>
<td>PA, PB, PC</td>
</tr>
<tr>
<td>PD</td>
<td>PA, PB, PC, PD, PE</td>
</tr>
<tr>
<td>PE</td>
<td>PA, PB, PC, PD, PE</td>
</tr>
<tr>
<td>PF</td>
<td>PA, PC, PE, PA, PB, PC, PE, PA, PB, PC, PE, PA</td>
</tr>
<tr>
<td>PG</td>
<td>PA, PC, PE, PA, PB, PC, PE, PA, PB, PC, PE, PA, PC, PE</td>
</tr>
<tr>
<td>PH</td>
<td>PH</td>
</tr>
</tbody>
</table>

(1) Positions PB and PD cover fillet welding of plate to plate and tubular section to plate.
Figure 1: Welding positions

a) Butt welds for plates

- PA Flat
- PE Overhead
- PC Horizontal
- PG Vertical downwards
- PF Vertical upwards

b) Filled welds for plates

- PA Flat
- PB Horizontal Vertical
- PC Horizontal
- PE Overhead
- PG Vertical downwards
- PF Vertical upwards

PB Horizontal Vertical
PC Horizontal
PE Overhead
PG Vertical downwards
PF Vertical upwards

PH Pipe position for welding upwards

PB Horizontal Vertical
PD Horizontal overhead

PB Horizontal Vertical
PD Horizontal overhead
2.7 Type of joint

2.7.1 Butt and fillet welds

The types of welded joint for welder’s qualification are to be classified as shown in Tab 7 in accordance with the qualification test.

A change of type of weld joint to type for which the welder is not qualified shall require new qualification testing.

Welders engaged in full/partial penetration T welds shall be qualified for butt welds for the welding process and the position corresponding to the joints to be welded.

For fillet welding, welders who passed the qualification tests for multi-layer technique welding can be deemed as qualified for single layer technique, but not vice versa.

2.7.2 Tack welding

A welder qualified for butt or fillet welding can be engaged in tack welding for the welding process and position corresponding to those permitted in his certificate.

Alternatively, welders engaged in tack welding only can be qualified on the test assemblies shown in Fig 6 and Fig 7.

3 Qualification test

3.1 General

3.1.1 It is the responsibility of shipyard or manufacturer to ensure that the welder is having adequate knowledge of the welding process including the regulation of the parameters of the welding equipment used.

Welding of the test assemblies and testing of test specimens shall be witnessed by the Surveyor.

The Surveyor may stop the test if the welding conditions are not correct or if it appears that the welder does not have the skill to achieve the qualification requirements.

3.2 Test assemblies

3.2.1 Dimensions and types of test assembly

The number, shape and dimensions of test assemblies are to be selected so as to cover the production welding work taking into account the welding variables and range of qualification in Article [2].

Test assemblies for butt welds and fillet welds are to be prepared as shown in Fig 2, Fig 3, Fig 4 and Fig 5 in each qualification test.

Test assemblies for butt tack welds and fillet tack welds are to be prepared as shown in Fig 6 and Fig 7.

3.2.2 Welding of test assembly

The welder qualification test assembly is to be welded according to a welding procedure specification (WPS and pWPS) simulating the conditions in production, as far as practicable.

The following conditions apply:

• The test assembly shall have at least one stop and restart in the root run and in the top capping run which has to be identified for further examination.

• The welder is allowed to remove minor imperfections only in the stop by grinding before restart welding.

• Any preheat, interpass temperature or controlled heat input specified in the welding procedure is required for the test assembly.

• Any post-weld heat treatment specified in the welding procedure may be omitted unless bend tests are required.

• The test assemblies are to be suitably identified with the mark of the surveyor and the identification of the welder before welding starts.
3.3 Examinations and tests

3.3.1 General
The non-destructive examinations and destructive tests required according to Tab 8 are to be carried out, while the location of test specimens is to be in accordance with Fig 2, Fig 3 and Fig 4.

Prior to mechanical tests, backing strips where used are to be removed. The test assembly can be sectioned by thermal cutting or by mechanical means discarding the first and last 25mm of the test piece at the end of the plates.

3.3.2 Visual examination
The welds shall be visually examined prior to the cutting of the test specimen for the bend test and fracture test.

The result of the examination is to show the absence of cracks or other serious imperfections.

Imperfections detected are to be assessed in accordance with quality level B in ISO 5817, except for the following imperfection types for which level C applies:

- excess weld metal
- excess penetration
- excess convexity and
- excess throat thickness.

3.3.3 Radiographic examination
When radiographic testing is used for butt welds, imperfections detected shall be assessed in accordance with ISO 5817, level B.

3.3.4 Bend test
Transverse root bend, face bend and side bend test specimens are to be machined to the dimensions given in NR216, Ch 1, Sec 2, [3.1].

Two face bend test and two root bend test specimens are to be tested for initial qualification test, and one face and one root bend test specimens for extension of approval.

For thickness 12 mm and over, four side bend test specimens (two side bend test specimens for extension of approval) with 10 mm in thickness may be tested as an alternative.

At least one bend test specimen shall include one stop and restart in the bending part, for root run or for cap run.

The bending angle is to be 180°. The bend ratio (D/t) is to be that specified for “welding consumable approvals +1” (NR216, Ch 5, Sec 2, [2] to [9] and [11]).

After testing, the test specimens shall not to reveal any open defects, in any direction, greater than 3 mm. Defects appearing at the corners of the test specimen during testing should be investigated case-by-case.

3.3.5 Fracture test (butt welds)
For fracture test, one specimen shall be taken from the stop and restart area in the examination length.

The test assembly examination length shall be cut into four equal test specimens with a minimum width of 35 mm.

When fracture testing is used for butt welds, full test specimen in length is to be tested in accordance with ISO 9017.

Imperfections detected shall be assessed in accordance with ISO 5817, level B.

Figure 2: Dimensions and types of test assembly for butt welds (T<12mm)

Figure 3: Dimensions and types of test assembly for butt welds (T≥12mm)
Figure 4: Dimensions and types of test assembly for fillet welds

Figure 5: Dimensions and types of test assembly for fillet welds of tubular section to plate

Figure 6: Dimensions and types of test assembly for tack butt welds

Figure 7: Dimensions and types of test assembly for tack fillet welds

Table 8: Examinations and tests

<table>
<thead>
<tr>
<th>Type of examination or test</th>
<th>Extent of the examination or test</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Butt weld</td>
</tr>
<tr>
<td>Visual examination</td>
<td>100%</td>
</tr>
<tr>
<td>Radiographic test</td>
<td>100% (1)</td>
</tr>
<tr>
<td>Bend tests (2)</td>
<td>2 face, 2 root (1)</td>
</tr>
<tr>
<td>Fracture tests</td>
<td>1 sample (1)</td>
</tr>
<tr>
<td>Macro-examination (3)</td>
<td>–</td>
</tr>
</tbody>
</table>

(1) Radiographic test or fracture test may be carried out in lieu of bend test except for the gas-shielded welding processes with solid wire or metal cored wire.

(2) Face and root bend tests may be substituted by 4 side bend tests for \(T \geq 12 \) mm.

(3) The fracture test may be replaced by two macro sections, one of which in stop/restart position.

(4) Additional tests may be required, at the discretion of the Society.
3.3.6 Fracture test (fillet welds)

For fillet welds, the test assembly shall be fractured as one complete specimen.

If necessary the test assembly may be cut into several test specimens of equal width. In this case, one specimen shall include a stop and restart area.

For fillet welds of tubular section to plate, the test assembly shall be cut into four or more test specimens and fractured. The fracture test is to be performed by folding the upright plate onto the through plate, in accordance with ISO 9017.

Evaluation shall concentrate on cracks, porosity and pores, inclusions, lack of fusion and incomplete penetration. Imperfections that are detected shall be assessed in accordance with ISO 5817, level B.

3.3.7 Macro examination

When macro examination is used for fillet welds, two test specimens are to be prepared from different cutting positions. At least one macro examination specimen shall be cut at the position of one stop and restart in either root run or cap run. These specimens are to be etched on one side to clearly reveal the weld metal, fusion line, root penetration and the heat affected zone.

Macro sections shall include at least 10 mm of unaffected base metal.

The examination is to reveal a regular weld profile, thorough fusion between adjacent layers of weld and base metal, sufficient root penetration and the absence of defects such as cracks, lack of fusion etc.

3.4 Retest

3.4.1 When a welder fails a qualification test, the following shall apply:

a) In cases where the welder fails to meet the requirements in part of the tests, a retest may be welded immediately, consisting of another test assembly of each type of welded joint and position that the welder failed. In this case, the test is to be done for duplicate test specimens of each failed test.

All retest specimens shall meet all of the specified requirements.

b) In cases where the welder fails to meet the requirements in all parts of the required tests or in the retest prescribed in [3.4.1] a), the welder shall undertake further training and practice.

c) Where there is specific reason to question the welder’s ability or the period of effectiveness has lapsed, the welder shall be re-qualified in accordance with the tests specified in [3.2] and [3.3].

3.4.2 Where any test specimen does not comply with dimensional specifications due to poor machining, a replacement test assembly shall be welded and tested.

4 Certification

4.1 Certification

4.1.1 Qualification certificates (see example in App 1) are normally issued when the welder has passed the qualification test by the Society.

Each shipyard and manufacturer shall be responsible for the control of the validity of the certificate and the range of the approval.

4.1.2 The following items shall be specified in the certificate:

a) Range of qualification for base metal, welding processes, filler metal type, types of welded joint, plate thicknesses and welding positions.

b) Expiry date of the validity of the qualification.

c) Name, date of birth, identification and the photograph of welder.

d) Name of shipbuilder / manufacturer.

4.1.3 When a certificate is issued, the relative documents such as test reports and/or re-validation records shall be archived as annexes to the copy of certificate according to the Society’s own practice.

4.1.4 The status of approvals of each individual qualification is to be demonstrated to the Society when requested.

5 Period of validity

5.1 Initial approval

5.1.1 Normally the validity of the welder’s approval begins from the issue date of qualification certificate when all the required tests are satisfactorily completed.

The certificate is to be signed at six-month intervals by the shipyards/manufacturers personnel who is responsible for production weld quality provided that all the following conditions are fulfilled:

a) The welder shall be engaged with reasonable continuity on welding work within the current range of approval. An interruption for a period no longer than six months is permitted.

b) The welder’s work shall in general be in accordance with the technical conditions under which the approval test is carried out.

c) There shall be no specific reason to question the welder’s skill and knowledge.

5.1.2 If any of these conditions are not fulfilled, the Society is to be informed and the certificate is to be cancelled.

The validity of the certificate may be maintained in agreement with the Society as specified in [5.2]. The maintenance scheme of qualification is in accordance with [5.2.1], a) or b).
5.2 Maintenance of the approval

5.2.1 Revalidation shall be carried out by the Society. The skill of the welder shall be periodically verified by one of the following:

a) The welder shall be tested every 3 years.

b) Every 2 years, two welds made during the last 6 months of the 2 years validity period shall be tested by radiographic or ultrasonic testing or destructive testing and shall be recorded. The weld tested shall reproduce the initial test conditions except for the thickness. These tests revalidate the welder’s qualifications for an additional 2 years.

5.2.2 The Society has to verify compliance with the above conditions and sign the maintenance of the welder’s qualification certificate.
SECTION 3 QUALIFICATION SCHEME FOR WELDERS OF ALUMINIUM ALLOYS HULL STRUCTURES

1 General

1.1 Scope

1.1.1 This Section gives requirements for a qualification scheme for welders intended to be engaged in the fusion welding of aluminium alloys hull structures.

1.1.2 This qualification scheme does not cover welding of pipes.

1.1.3 This qualification scheme covers welding of fillet weld of tubular section to plate with diameter D > 25 mm.

1.1.4 Welders or welding operators qualified in accordance with national or international welder qualification standards may also be engaged in welding of hull structures at the discretion of the Society provided that the qualification testing, range of approval and revalidation requirements are considered equivalent to this document.

1.2 Welding Operators

1.2.1 The welding operators responsible for setting up and/or adjustment of fully mechanized and automatic equipment, must be qualified whether he operates the equipment or not.

However a welding operator, who solely operates the equipment without responsibility for setting up and/or adjustment, does not need qualification provided that he has experience of the specific welding work concerned and the production welds made by the operators are of the required quality.

The qualification test and approval range of the welding operator are left to the discretion of the Society in accordance with ISO 14732.

2 Variables and range of qualification

2.1 Welding process

2.1.1 The welding processes for welder’s qualification are to be classified in Tab 1 as, Semi-automatic welding/Partly mechanized welding (S) and TIG welding (T).

Each testing normally qualifies only for one welding process.

For the welding process 141, a change in current from direct current to alternating current and vice versa requires a new qualification test.

A change of welding process requires a new qualification test.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Welding process in actual welding works</th>
<th>ISO 4063</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>Semi-automatic welding / Partly mechanized welding</td>
<td>131</td>
</tr>
<tr>
<td>T</td>
<td>TIG welding</td>
<td>141</td>
</tr>
</tbody>
</table>

2.2 Welding Consumables

2.2.1 Welding consumables used for qualification tests are to be approved by the Society in accordance with NR 216, Ch 5, Sec 2, [15] unless otherwise agreed.

The welding consumable grade is to be acceptable for the parent metal used for qualification tests.

Welding with filler material qualifies for welding without filler material, but not vice versa.

2.3 Base Metal

2.3.1 Qualification tests are made on plates of a typical marine aluminium alloy grade (usual 5083, 5086, 5754) and confer approval to production welds on plates of any Marine grade and/or extruded products made of alloys 6005A, 6061 and 6082.

2.4 Range of thickness

2.4.1 The qualified plate thickness range arising from the welder qualification test plate thickness is shown in Tab 2.

<table>
<thead>
<tr>
<th>Thickness T of the test assembly (mm)</th>
<th>Qualified plate thickness range t (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T ≤ 6</td>
<td>0,7 T ≤ t < 2,5 T</td>
</tr>
<tr>
<td>6 < T ≤ 15</td>
<td>6 mm < t ≤ 40 mm (1)</td>
</tr>
</tbody>
</table>

(1) A special test is required for material thicknesses greater than 40 mm. Such a special test shall be indicated on the welder’s certificate.

2.5 Range of tubular section diameter

2.5.1 The qualified tubular section diameter range arising from the tubular section diameter used during the welder qualification test is shown in Tab 3.
Figure 1: Welding positions

a) Butt welds for plates

- PA Flat
- PE Overhead
- PC Horizontal
- PG Vertical downwards
- PF Vertical upwards

b) Filled welds for plates

- PA Flat
- PB Horizontal Vertical
- PC Horizontal
- PE Overhead
- PG Vertical downwards
- PF Vertical upwards

PB Horizontal Vertical
- PD Horizontal overhead

PH Pipe position for welding upwards

c) Fillet welds of tubular section on plate
Table 3: Tubular section diameters for welder’s qualification

<table>
<thead>
<tr>
<th>Diameter D of test assembly (mm)</th>
<th>Qualified diameter range (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D > 25</td>
<td>≥ 0.5 D (25 mm min.)</td>
</tr>
</tbody>
</table>

Table 4: Qualified welding positions when testing with butt welding

<table>
<thead>
<tr>
<th>Qualification test position with butt weld</th>
<th>Qualified welding positions in actual welding works</th>
</tr>
</thead>
<tbody>
<tr>
<td>PA</td>
<td>PA, PB</td>
</tr>
<tr>
<td>PC</td>
<td>PA, PC, PC, PA, PB, PC</td>
</tr>
<tr>
<td>PE</td>
<td>PA, PC, PE, PA, PB, PC, PD, PE</td>
</tr>
<tr>
<td>PF</td>
<td>PA, PF, PA, PB</td>
</tr>
<tr>
<td>PG</td>
<td>PA, PB, PF</td>
</tr>
</tbody>
</table>

Table 5: Qualified welding positions when testing with fillet welding

<table>
<thead>
<tr>
<th>Qualification test position with fillet weld</th>
<th>Qualified welding positions in actual welding works (1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PA</td>
<td>PA</td>
</tr>
<tr>
<td>PB</td>
<td>PA, PB</td>
</tr>
<tr>
<td>PC</td>
<td>PA, PB, PC</td>
</tr>
<tr>
<td>PD</td>
<td>PA, PB, PC, PD, PE</td>
</tr>
<tr>
<td>PE</td>
<td>PA, PB, PC, PD, PE</td>
</tr>
<tr>
<td>PF</td>
<td>PA, PB, PF</td>
</tr>
<tr>
<td>PG</td>
<td>PG</td>
</tr>
<tr>
<td>PH</td>
<td>PH</td>
</tr>
</tbody>
</table>

(1) Positions PB and PD cover fillet welding of plate to plate and tubular section to plate.

2.6 Welding Position

2.6.1 The welding positions qualified as a result of the actual welding position used in a satisfactory welder’s qualification test, are shown in Tab 4 and Tab 5. Diagrams showing the definitions of weld position used in Tab 4 and Tab 5 are shown in Fig 1. A change in the position of welding to one for which the welder is not qualified shall require new qualification testing. The Society may require a qualification test with fillet welding for welders who are employed for fillet welding only.

2.7 Type of joint

2.7.1 Butt and fillet welds

The types of welded joint for welder’s qualification are to be classified as shown in Tab 6 in accordance with the qualification test.

Table 6: Type of welded joint for welder’s qualification

<table>
<thead>
<tr>
<th>Type of welded joint used in the test assembly for the qualification test</th>
<th>range of qualification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Butt welds</td>
</tr>
<tr>
<td></td>
<td>Welded from one side</td>
</tr>
<tr>
<td></td>
<td>With backing</td>
</tr>
<tr>
<td></td>
<td>With backing</td>
</tr>
<tr>
<td></td>
<td>No backing</td>
</tr>
<tr>
<td></td>
<td>With gouging</td>
</tr>
<tr>
<td></td>
<td>No gouging</td>
</tr>
<tr>
<td>Butt weld</td>
<td></td>
</tr>
<tr>
<td>One side</td>
<td></td>
</tr>
<tr>
<td>With backing</td>
<td>x</td>
</tr>
<tr>
<td>No backing</td>
<td>x</td>
</tr>
<tr>
<td>Both sides</td>
<td>x</td>
</tr>
<tr>
<td>With gouging</td>
<td>x</td>
</tr>
<tr>
<td>No gouging</td>
<td>x</td>
</tr>
<tr>
<td>Fillet weld</td>
<td></td>
</tr>
</tbody>
</table>

○ indicates the type of assembly of qualification.

x indicates on the same line as the symbol ○ those welds for which the welder is also qualified.

– indicates on the same line as the symbol ○ those welds for which the welder is not qualified.
3 Qualification test

3.1 General

3.1.1 It is the responsibility of shipyard or manufacturer to ensure that the welder is having adequate knowledge of the welding process including the regulation of the parameters of the welding equipment used.

Welding of the test assemblies and testing of test specimens shall be witnessed by the Surveyor.

The Surveyor may stop the test if the welding conditions are not correct or if it appears that the welder does not have the skill to achieve the qualification requirements.

Figure 2: Dimensions and types of test assembly for butt welds (T < 12mm)

Figure 3: Dimensions and types of test assembly for butt welds (T ≥ 12mm)

3.2 Test Assemblies

3.2.1 Dimensions and types of test assembly

The number, shape and dimensions of test assemblies are to be selected so as to cover the production welding work taking into account the welding variables and range of qualification in Article [2].

Test assemblies for butt welds and fillet welds are to be prepared as shown in Fig 2, Fig 3, Fig 4 and Fig 5 in each qualification test.

Test assemblies for butt tack welds and fillet tack welds are to be prepared as shown in Fig 6 and Fig 7.

Figure 4: Dimensions and types of test assembly for fillet welds

Figure 5: Dimensions and types of test assembly for fillet welds of tubular section to plate
3.2.2 Welding of test assembly
The welder qualification test assembly is to be welded according to a welding procedure specification (WPS and pWPS) simulating the conditions in production, as far as practicable.

The following conditions apply:
- The test assembly shall have at least one stop and restart in the root run and in the top capping run which has to be identified for further examination.
- The welder is allowed to remove minor imperfections only in the stop by grinding before restart welding.
- Any preheat, interpass temperature or controlled heat input specified in the welding procedure is required for the test assembly.
- Any post-weld heat treatment specified in the welding procedure may be omitted unless bend tests are required.
- The test assemblies are to be suitably identified with the mark of the surveyor and the identification of the welder before welding starts.

3.3 Examinations and tests

3.3.1 General
The non-destructive examinations and destructive tests required according to Tab 7 are to be carried out, while the location of test specimens is to be in accordance with Fig 2, Fig 3 and Fig 4.

Prior to mechanical tests, backing strips where used are to be removed. The test assembly can be sectioned by thermal cutting or by mechanical means discarding the first and last 25mm of the test piece at the end of the plates.

3.3.2 Visual examination
The welds shall be visually examined prior to the cutting of the test specimens for the bend test and the fracture test.

The result of the examination is to show the absence of cracks or other serious imperfections. Imperfections detected are to be assessed in accordance with quality level B in ISO 10042, except for the following imperfection types for which level C applies:
- excess weld metal
- excess of penetration
- excess convexity and,
- excess throat thickness.

<table>
<thead>
<tr>
<th>Type of examination or test</th>
<th>Extent of the examination or test</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Butt weld</td>
</tr>
<tr>
<td>Visual examination</td>
<td>100%</td>
</tr>
<tr>
<td>Radiographic test</td>
<td>100% (1)</td>
</tr>
<tr>
<td>Bend tests (2)</td>
<td>2 face, 2 root (1)</td>
</tr>
<tr>
<td>Fracture tests</td>
<td>1 sample (1)</td>
</tr>
<tr>
<td>Macro-examination (3)</td>
<td>–</td>
</tr>
</tbody>
</table>

(1) Radiographic test or fracture test may be carried out in lieu of bend test except for process 131 (MIG).
(2) Only mandatory in addition to radiographic test for process 131 (MIG).
(3) The fracture test may be replaced by two macro sections, one of which in stop/restart position.
(4) Additional tests may be required, at the discretion of the Society.

Table 7: Examinations and tests
3.3.3 Radiographic examination
When radiographic testing is used for butt welds, imperfections detected shall be assessed in accordance with ISO 10042, level B, except for the following imperfection types for which level C applies:

- excess weld metal
- excess of penetration and,
- excess convexity.

3.3.4 Bend test
Transverse root bend, face bend and side bend test specimens are to be machined to the dimensions given in NR216, Ch 1, Sec 2, [3.1].

Two face bend test and two root bend test specimens are to be tested for initial qualification test, and one face and one root bend test specimens for extension of approval.

For thickness 12 mm and over, four side bend test specimens (two side bend test specimens for extension of approval) with 10 mm in thickness may be tested as an alternative.

At least one bend test specimen shall include one stop and restart in the bending part, for root run or for cap run.

The bending angle is to be 180°. The bend ratio (D/t) is to be that specified for welding consumables approvals (NR216, Ch 5, Sec 2, [15]).

After testing, the test specimens shall not to reveal any open defects, in any direction, greater than 3 mm. Defects appearing at the corners of the test specimen during testing should be investigated case-by-case.

3.3.5 Fracture test (butt welds)
For fracture test, one specimen shall be taken from the stop and restart area in the examination length.

The test assembly examination length shall be cut into four equal test specimens with a minimum width of 35 mm.

When fracture testing is used for butt welds, full test specimen in length is to be tested in accordance with ISO 9017.

Imperfections detected shall be assessed in accordance with ISO 10042, level B, except for the following imperfection types for which level C applies:

- excess weld metal
- excess of penetration and,
- excess convexity.

3.3.6 Fracture test (fillet weld)
For fillet welds, the test assembly shall be fractured as one complete specimen.

If necessary the test assembly may be cut into several test specimens of equal width. In this case, one specimen shall include a stop and restart area.

For fillet welds of tubular section to plate, the test assembly shall be cut into four or more test specimens and fractured.

The fracture test is to be performed by folding the upright plate onto the through plate, in accordance with ISO 9017.

Imperfections detected shall be assessed in accordance with ISO 10042, level B, except for the following imperfection types for which level C applies:

- excess weld metal
- excess of penetration and,
- excess convexity.

3.3.7 Macro examination
When macro examination is used for fillet welds, two test specimens are to be prepared from different cutting positions. At least one macro examination specimen shall be cut at the position of one stop and restart in either root run or cap run. These specimens are to be etched on one side to clearly reveal the weld metal, fusion line, root penetration and the heat affected zone.

Macro sections shall include at least 10 mm of unaffected base metal.

The examination is to reveal a regular weld profile, thorough fusion between adjacent layers of weld and base metal, sufficient root penetration and the absence of defects such as cracks, lack of fusion etc.

3.4 Retest

3.4.1 When a welder fails a qualification test, the following shall apply:

a) In cases where the welder fails to meet the requirements in part of the tests, a retest may be welded immediately, consisting of another test assembly of each type of welded joint and position that the welder failed. In this case, the test is to be done for duplicate test specimens of each failed test.

All retest specimens shall meet all of the specified requirements.

b) In cases where the welder fails to meet the requirements in all parts of the required tests or in the retest prescribed in [3.4.1] a), the welder shall undertake further training and practice.

c) When there is specific reason to question the welder’s ability or the period of effectiveness has lapsed, the welder shall be re-qualified in accordance with the tests specified in [3.2] and [3.3].

4 Certification

4.1 Certification

4.1.1 Qualification certificates (see example in App 1) are normally issued when the welder has passed the qualification test by the Society.

Each shipyard and manufacturer shall be responsible for the control of the validity of the certificate and the range of the approval.
4.1.2 The following items shall be specified in the certificate:

a) Range of qualification for base metal, welding processes, filler metal type, types of welded joint, plate thicknesses and welding positions.

b) Expiry date of the validity of the qualification.

c) Name, date of birth, identification and the photograph of welder.

d) Name of shipbuilder/manufacturer.

4.1.3 When a certificate is issued, the relative documents such as test reports and/or re-validation records shall be archived as annexes to the copy of certificate according to the Society’s own practice.

4.1.4 The status of approvals of each individual qualification is to be demonstrated to the Society when requested.

5 Period of validity

5.1 Initial approval

5.1.1 Normally the validity of the welder's approval begins from the issue date of qualification certificate when all the required tests are satisfactorily completed.

The certificate is to be signed at six-month intervals by the shipyards/manufacturers personnel who is responsible for production weld quality provided that all the following conditions are fulfilled:

a) The welder shall be engaged with reasonable continuity on welding work within the current range of approval. An interruption for a period no longer than six months is permitted.

b) The welder’s work shall in general be in accordance with the technical conditions under which the approval test is carried out.

c) There shall be no specific reason to question the welder’s skill and knowledge.

5.1.2 If any of these conditions are not fulfilled, the Society is to be informed and the certificate is to be cancelled. The validity of the certificate may be maintained in agreement with the Society as specified in [5.2]. The maintenance scheme of qualification is in accordance with [5.2.1] a) or b).

5.2 Maintenance of the approval

5.2.1 Revalidation shall be carried out by the Society. The skill of the welder shall be periodically verified by one of the following:

a) The welder shall be tested every 3 years.

b) Every 2 years, two welds made during the last 6 months of the 2 years validity period shall be tested by radiographic or ultrasonic testing or destructive testing and shall be recorded. The weld tested shall reproduce the initial test conditions except for the thickness. These tests revalidate the welder's qualifications for an additional 2 years.

5.2.2 The Society has to verify compliance with the above conditions and sign the maintenance of the welder’s qualification certificate.
SECTION 4 QUALIFICATION SCHEME FOR WELDERS FOR OTHER PRODUCTIONS

1 General

1.1 Scope

1.1.1 This Section gives requirements for a qualification scheme for welders intended to be engaged in productions not included in Sec 2 and Sec 3 (such as some welded components, boilers and pressure vessels, pressure piping systems, butt weld on pipes,...etc).

1.1.2 This qualification scheme does not cover welders engaged in oxy-acetylene welding.

1.2 Welding Operators

1.2.1 The welding operators responsible for setting up and/or adjustment of fully mechanized and automatic equipment, must be qualified whether he operates the equipment or not.

However a welding operator, who solely operates the equipment without responsibility for setting up and/or adjustment, does not need qualification provided that he has experience of the specific welding work concerned and the production welds made by the operators are of the required quality.

The qualification test and approval range of the welding operator are left to the discretion of the Society with reference to ISO 14732.

2 Variables and range of qualification

2.1 Reference to recognised standard

2.2 Welding process

2.2.1 The welding processes for welder’s qualification are to be classified in Tab 1 as, Manual welding (M), Semi-automatic welding/Partly mechanized welding (S) and TIG welding (T).

Each testing normally qualifies only for one welding process. A change of welding process requires a new qualification test.

2.3 Welding Consumables

2.3.1 Welding of steels

Welding consumables used for qualification tests are to be approved by the Society in accordance with NR216, Ch 5, Sec 2, unless otherwise agreed.

The welding consumable grade is to be acceptable for the parent metal used for qualification tests.

Welding with filler material qualifies for welding without filler material, but not vice versa.

2.3.2 Welding of copper and copper alloys

The welding consumable grade is to be acceptable for the parent metal used for qualification tests.

Welding with filler material qualifies for welding without filler material, but not vice versa.

2.4 Base Metal

2.4.1 Extra high strength steels

This group of base metal is corresponding to weldable structural steel grade with a specified minimum yield strength ReH > 460 N/mm².

Range of qualification shall be in accordance with recognised standards such as ISO 9606 series, ASME Section IX, ANSI/AWS D1.1.

Table 1 : Welding processes for welder’s qualification

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Welding process in actual welding works</th>
<th>ISO 4063</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>Manual welding</td>
<td>Manual metal arc welding (metal arc welding with covered electrode)</td>
</tr>
<tr>
<td>S</td>
<td>Semi-automatic welding / Partly mechanized welding</td>
<td>Metal inert gas (MIG) welding</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Metal active gas (MAG) welding (3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Flux-cored arc (FCA) welding (3)</td>
</tr>
<tr>
<td>T</td>
<td>TIG welding</td>
<td>Tungsten inert gas (TIG) welding</td>
</tr>
</tbody>
</table>

The Society may require separate qualification for solid wires, metal cored wires and flux-cored wires as follows:

(1) A change from MAG welding with solid wires (135) to that with metal cored wires (138), or vice versa is permitted.

(2) A change from a solid or metal cored wire (135/138) to a flux-cored wire (136) or vice versa requires a new qualification test.

(3) Only for steels.
2.4.2 Copper and Copper alloys
Range of qualification shall be in accordance with recognised standards such as ISO 9606 series, ASME Section IX, ANSI/AWS D1.1.

2.4.3 Others
Range of qualification shall be in accordance with recognised standards such as ISO 9606 series, ASME Section IX, ANSI/AWS D1.1.

2.5 Range of thickness

2.5.1 Range of qualification shall be in accordance with recognised standards such as ISO 9606 series, ASME Section IX, ANSI/AWS D1.1.

2.6 Range of pipe diameter

2.6.1 Range of qualification shall be in accordance with recognised standards such as ISO 9606 series, ASME Section IX, ANSI/AWS D1.1.

2.7 Welding Position

2.7.1 Range of qualification shall be in accordance with recognised standards such as ISO 9606 series, ASME Section IX, ANSI/AWS D1.1.

2.8 Type of joint

2.8.1 Range of qualification shall be in accordance with recognised standards such as ISO 9606 series, ASME Section IX, ANSI/AWS D1.1.

3 Qualification test

3.1 Scope

3.1.1 Test assemblies (dimensions, types), qualification tests and examinations with their acceptance criteria are to be based on recognised standards such as ISO 9606 series, ASME Section IX, ANSI/AWS D1.1.

4 Certification

4.1 Certification

4.1.1 Qualification certificates (see example in App 1) are normally issued when the welder has passed the qualification test by the Society.

Each shipyard and manufacturer shall be responsible for the control of the validity of the certificate and the range of the approval.

4.1.2 The following items shall be specified in the certificate:

a) Range of qualification for base metal, welding processes, filler metal type, types of welded joint, plate thicknesses and welding positions.

b) Expiry date of the validity of the qualification.

c) Name, date of birth, identification and the photograph of welder.

d) Name of shipbuilder / manufacturer.

4.1.3 When a certificate is issued, the relative documents such as test reports and/or re-validation records shall be archived as annexes to the copy of certificate according to the Society’s own practice.

4.1.4 The status of approvals of each individual qualification is to be demonstrated to the Society when requested.

5 Period of validity

5.1 Initial approval

5.1.1 Normally the validity of the welder’s approval begins from the issue date of qualification certificate when all the required tests are satisfactorily completed.

The certificate is to be signed at six-month intervals by the shipyards/manufacturers personnel who is responsible for production weld quality provided that all the following conditions are fulfilled:

a) The welder shall be engaged with reasonable continuity on welding work within the current range of approval. An interruption for a period no longer than six months is permitted.

b) The welder’s work shall in general be in accordance with the technical conditions under which the approval test is carried out.

c) There shall be no specific reason to question the welder’s skill and knowledge.

5.1.2 If any of these conditions are not fulfilled, the Society is to be informed and the certificate is to be canceled.

The validity of the certificate may be maintained in agreement with the Society as specified in [5.2]. The maintenance scheme of qualification is in accordance with [5.2.1] a) or b).

5.2 Maintenance of the approval

5.2.1 Revalidation shall be carried out by the Society. The skill of the welder shall be periodically verified by one of the following:

a) The welder shall be tested every 3 years.

b) Every 2 years, two welds made during the last 6 months of the 2 years validity period shall be tested by radiographic or ultrasonic testing or destructive testing and shall be recorded. The weld tested shall reproduce the initial test conditions except for the thickness. These tests revalidate the welder’s qualifications for an additional 2 years.

5.2.2 The Society has to verify compliance with the above conditions and sign the maintenance of the welder’s qualification certificate.
1 Welder’s qualification certificate

1.1

1.1.1

An example of welder’s qualification certificate is shown in Fig 1.

Figure 1 : Welder’s qualification certificate

<table>
<thead>
<tr>
<th>Employer's name and address:</th>
<th>Photograph</th>
</tr>
</thead>
<tbody>
<tr>
<td>Welder's name:</td>
<td></td>
</tr>
<tr>
<td>Identification No.:</td>
<td></td>
</tr>
<tr>
<td>Date of birth:</td>
<td></td>
</tr>
</tbody>
</table>

Production type

<table>
<thead>
<tr>
<th>Hull structural steels</th>
<th>Aluminium alloys hull structures</th>
</tr>
</thead>
</table>

WPS/pWPS No.

<table>
<thead>
<tr>
<th>Type of test and examination</th>
<th>Performed and accepted</th>
<th>Not required</th>
<th>Test Report Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visual examination</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radiographic examination</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surface examination</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Macro examination</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fracture test</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bend test</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Additional tests</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Items: Test assembly, Range of qualification

- Welding process
- Base metal
- Filler metal type
- Plate thickness
- Type of welded joint
- Welding position
- Type of current, polarity
- Shielding gas
- Backing and gouging condition
- Other details

This is to attest that the welder identified above has passed the qualification tests, in witnessing of Bureau Veritas Marine & Offshore, in accordance with Rule Note NR 476 and Bureau Veritas Rules for the Classification of Steel Ships.

Date and place of issue: This certificate will expire on:

Surveyor's name, signature and stamp:

Employer’s endorsement to confirm the validity for the following six months (date, name, position, signature) and statements to be attached when applicable.

This Certificate is delivered within the scope of the General Conditions of Bureau Veritas Marine and Offshore. Any person not a party to the contract pursuant to which this document is delivered may not assert a claim against Bureau Veritas Marine & Offshore for any liability arising out of errors or omissions which may be contained in said document, or for errors of judgment, fault or negligence committed by personnel of the Society or of its Agents in establishment or issuance of this document, and in connection with any activities for which it may provide.

BV Mod. Ad.E 636 - January 2018